

Technical Documentation

Last changed on: 2021-02-12

FPS Series

Floating AC/DC Low Voltage Power Supplies

- dedicated supply unit, e.g. for e-beam based coating applications
- floating LV supply on HV potential via HV-in connector
- USB, analog Interface (AIO), CAN, RS232 and Ethernet interface options
- optional LCD front panel operation
- special control modes: direct filament heating control or emission current control

Document history

Version	Date	Major changes
1.0	2021-02-12	Initial release

Disclaimer / Copyright

Copyright © 2021 by iseg Spezialelektronik GmbH / Germany. All Rights Reserved.

This document is under copyright of iseg Spezialelektronik GmbH, Germany. It is forbidden to copy, extract parts, duplicate for any kind of publication without a written permission of iseg Spezialelektronik GmbH. This information has been prepared for assisting operation and maintenance personnel to enable efficient use.

The information in this manual is subject to change without notice. We take no responsibility for any mistake in the document. We reserve the right to make changes in the product design without reservation and without notification to the users. We decline all responsibility for damages and injuries caused by an improper use of the device.

Safety

This section contains important security information for the installation and operation of the device. Failure to follow safety instructions and warnings can result in serious injury or death and property damage.

Safety and operating instructions must be read carefully before starting any operation.

We decline all responsibility for damages and injuries caused which may arise from improper use of our equipment.

Depiction of the safety instructions

DANGER!

"Danger!" indicates a severe injury hazard. The non-observance of safety instructions marked as "Danger!" will lead to possible injury or death.

WARNING!

"Warning!" indicates an injury hazard. The non-observance of safety instructions marked as "Warning!" could lead to possible injury or death.

CAUTION!

Advices marked as "Caution!" describe actions to avoid possible damages to property.

INFORMATION

 $\label{lem:condition} \mbox{Advices marked as "Information" give important information.}$

Read the manual.

Attention high voltage!

Important information.

Intended Use

The device may only be operated within the limits specified in the data sheet. The permissible ambient conditions (temperature, humidity) must be observed. The device is designed exclusively for the generation of high voltage as specified in the data sheet. Any other use not specified by the manufacturer is not intended. The manufacturer is not liable for any damage resulting from improper use.

Qualification of personnel

A qualified person is someone who is able to assess the work assigned to him, recognize possible dangers and take suitable safety measures on the basis of his technical training, his knowledge and experience as well as his knowledge of the relevant regulations.

General safety instructions

- Observe the valid regulations for accident prevention and environmental protection.
- Observe the safety regulations of the country in which the product is used.
- Observe the technical data and environmental conditions specified in the product documentation.
- You may only put the product into operation after it has been established that the high-voltage device complies with the country-specific regulations, safety regulations and standards of the application.
- The high-voltage power supply unit may only be installed by qualified personnel.

Important safety instructions

DANGER!

Before operations at the load or the high voltage output of the power supply are started, the device has to be switched off, the discharge of residual voltage has to be finished and the high voltage output of the power supply must be properly grounded. Depending on the application residual voltages can be present for long time periods. These residual voltages can lead to severe injuries.

DANGER!

This device is part of a high voltage supplying system. High voltages are dangerous and may be fatal.

USE CAUTION WHILE WORKING WITH THIS EQUIPMENT. BE AWARE OF ELECTRICAL HAZARDS.

Always follow at the minimum these provisions:

- · High voltages must always be grounded
- Do not touch wiring or connectors without securing
- Never remove covers or equipment
- Always observe humidity conditions
- Service must be done by qualified personnel only

WARNING!

To avoid injury of users it is not allowed to open the unit. There are no parts which can be maintained by users inside of the unit. Opening the unit will void the warranty.

WARNING!

The high-voltage cable must be professionally connected to the consumer/load and the connection insulated with the appropriate dielectric strength. Do not power the consumer/load outside of its specified range.

WARNING!

Before connecting or disconnecting HV cables or any operation on the HV output or the application, the unit has to be switched off and discharge of residual voltage has to be finished. Depending on application, residual voltages can be present for long time periods.

WARNING!

Do not operate the unit in wet or damp conditions.

WARNING!

Do not operate the unit in an explosive atmosphere.

WARNING!

The high-voltage generation may only be switched on with this device if the corresponding counterpart with arrester is connected at the output of the high-voltage power supply.

WARNING!

The protective conductor connection must be ensured by an appropriate mains cable. Before connecting to the local power grid, check whether the nominal voltage of the devices corresponds to the mains voltage.

WARNING!

Do not operate the unit if you suspect the unit or the connected equipment to be damaged.

WARNING!

The mains connection is made with basic insulation and protective conductor. The device may only be operated with the protective earth conductor (PE) connected!

The protective conductor connections must be checked for proper function after installation.

WARNING

The user has to ensure that no danger will occur because of the voltage between the return conductor and the protective ground!

CAUTION!

The return conductor can be isolated from the protective ground by opening the short circuit between "0V" and "X" at the back panel of the power supply. The voltage between the return conductor and the protective ground is not monitored by the device.

CAUTION!

When installing the units, make sure that an air flow through the corresponding air inlet and outlet openings is possible.

CAUTION!

Particularly while remote controlling high voltage systems, make sure that nobody is near the high voltage or can be injured.

CAUTION!

When operating the device with an ambient temperature above 35° C the temperature of accessible parts may rises above 45° C!

CAUTION!

Risk of injury due to the weight of the device

Incorrect lifting and transport of the device can cause injuries.

- Transport and lift the device carefully. Pay attention to the weight of the product.
- Wear suitable personal protective equipment for all work on the product.
- Use suitable transport and lifting equipment.

INFORMATION

Please check the compatibility with the devices used.

Table of contents

	Disclaimer / Copyright	2
		2
	Safety	3
	Depiction of the safety instructions	3
	Intended Use	2
	Qualification of personnel	2
	General safety instructions	2
	Important safety instructions	5
1	General description	10
	1.1 Technical data	10
	1.2 Electrical wiring of the high voltage part	12
	1.3 Functional description	12
2	Features	13
_		
	2.1 Operation states	13
	2.2 Monitoring	13
3	Pinout	14
	3.1 Supply	14
	3.2 HV connection	15
	3.3 USB / RS232 Interface	16
	3.4 CAN Interface	16
	3.5 Ethernet Interface	16
	3.6 AIO Interface	16
4	Front Panel Control	17
	4.1 Front panel control elements	17
	4.2 Front Panel Operation	18
	4.3 Displays	18
	4.4 Menu	19
	4.5 Errors	19
5	Interface Control	20
	5.1 USB and RS-232 Interface	21
	5.2 CAN Interface	21
	5.3 Ethernet Interface	22
	5.4 Description of the Analog I/O Interface (AIO)	24
6	Errors	27
	6.1 Error acknowledgement	27
	6.2 Error messages on the Displays	27
	6.3 Further errors	27
7	Maintenance	27
8	Dimensional drawings	28
9	Connectors and PIN assignments	30
10	Accessoires	31
11	Order guides	31
12	References	32

13	Glossary	33
14	Warranty & Service	34
15	Disposal	34
16	Manufacturer contact	34

1 General description

The FPS series is a dedicated floating low voltage power supply. It can be used for example as filament power supply in electron beam coating applications. The main advantage is the possibility to be combined with HPS high voltage power supplies, where the FPS output can be driven at high voltage by the HPS. Therefore the FPS has a HV-input connector and a HV-capable output.

1.1 Technical data

TECHNICAL DATA	FPS 19" / 2U	J			
Output voltage V _{nom}	10 V – 50 V				
Output current I _{nom}	60 A – 8 A				
Output power P _{nom} (1	600 W				
Isolation voltage between floating low voltage outputs and protective earth (2	5 kV or 10 k	V			
Efficiency	> 90 % (P _{nom}	, V _{in} = 230 V)			
Ripple and noise	Current con	trol: Δi < 1.5 % • I _{nom}	(at I _{out} > 0.1 • I _{nom})		
Accuracy ⁽³	Voltage	< 1% • V_{nom} (at I_{out} >	0.1 • I _{nom})		
	Current	< 1% • V _{nom} (at I _{out} $>$	0.1 • I _{nom})		
Temperature coefficient	<100 ppm •	K ⁻¹			
Control (Local, Front panel)	Optional fro	nt panel operation	via rotary encoders ar	nd LCD displays	
Control (Remote)	AIO	Analog signals	Level	0 V – 10 V	
		Digital signals	Low level	0 V – 4 V	
			High level	8 V – 24 V	
	USB RS232 CAN Ethernet	1x USB Type-B Por Optional, D-Sub-9 I Optional, D-Sub-9 I Optional, RJ-45 Por	Port Port		
Monitoring	Temperatur	·			
Supply	$V_{in} = 85 \text{ V} - 264 \text{ V, AC}$ $I_{in} < 3 \text{ A (P}_{nom}, V_{in} = 230 \text{ V)}$ $Line frequency 47 \text{ Hz} < f < 63 \text{ Hz}$ $Internally fused with 10 \text{ A slow}$				
Cooling	Forced cooling with speed-controlled fan (≤ 36 m³/h				
Connector	Floating LV Output (2 Cable S08				
	HV Input (2	S08 LE	EMO		
Return of the high voltage	Floating or Grounded (see notes in section 1.2 Electrical wiring of voltage part)		cal wiring of the high		
Electromagnetic compatibility	Emitted inte	erference EN 5501	1 Limit value curve B		
	Interference immunity	EN 61000	0 4-2, EN 61000 4-3, E	N 61000 4-4, EN 61000 4-8	

TECHNICAL DATA	FPS 19" / 2U			
Safety standard	EN 61010-1 (VDE 0411	EN 61010-1 (VDE 0411)		
Operating parameters	Temperature: 0°C – 50 °C			
	Humidity:	20% – 90%, non-condensing		
Storage parameters	Temperature:	-25°C - 80 °C		
	Humidity:	20% – 90%, non-condensing		
Dimensions	2U –19" compatible / o	depth: 410 mm		
Weight	6 kg			

Table 1: Technical data

CONFIGURATIONS I	CONFIGURATIONS FPS 600W						
Device	V _{nom}	I _{nom}	P _{nom}	Isolation voltage	HV input connector	Floating LV output connector	Manufacturer code ⁽⁴
Fpd 010 060 010	10 V	60 A	600 W	10 kV	L11	Cable ⁽³	F010060d010ooooocc
Fpd 012 050 010	12 V	50 A	600 W	10 kV	L11	Cable ⁽³	F012050d010ooooocc
Fpd 020 030 010	20 V	30 A	600 W	10 kV	L11	Cable ⁽³	F020030d010ooooocc
Fpd 030 020 010	30 V	20 A	600 W	10 kV	L11	Cable ⁽³	F030020d010ooooocc
Fpd 040 015 010	40 V	15 A	600 W	10 kV	L11	Cable ⁽³	F040015d010ooooocc
Fpd 040 010 050	40 V	10 A	400 W	5 kV	S08 ⁽¹	S08 ⁽¹	F040010d00500000cc
Fpd 012 008 050	12.5 V	8 A ⁽²	100 W ⁽²	5 kV	S08 ⁽¹	S08 ⁽¹	F12e008d005ooooocc

Table 2: Configurations

OPTIONS	OPTION CODE	EXAMPLE	ITEM CODE HEX CODING
LCD Front Panel	FP	FPp 010 060 010 - FP	001
CAN Interface (1	CAN	FPp 010 060 010 - CAN	008
Ethernet Interface (1	ETH	FPp 010 060 010 - ETH	020
RS232 Interface (1	RS232	FPp 010 060 010 - RS2	004
Universal Serial Bus (1	USB	FPp 010 060 010 - USB	080
Notes: 1) only 2 at once: CAN, ETH, RS2	232		

Table 3: Options

¹⁾ May be lower, depending on limitations

²⁾ Depending on cable option

³⁾ for one year

Notes:

1) SO8 Connector limits output current and floating voltage
2) Optimized low heating current operation
3) Plugable versions on request

⁴⁾ The complete manufacturer code is formed from the device-specific properties (e.g. OPTIONS), see chapter 11 Order guides

1.2 Electrical wiring of the high voltage part

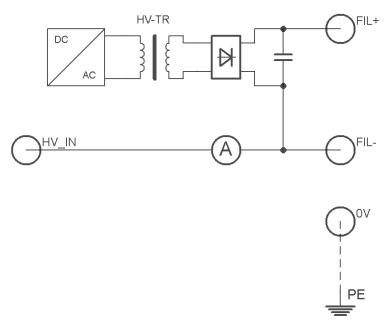


Figure 1: Electrical wiring of the high voltage part

The external high voltage generator, which shall be connected to HV IN, elevates the positive (FIL+) and negative (FIL-) outputs of the FPS to a high voltage. The return conductor of the high voltage generator and the connection the load can be either connected to PE or left isolated via connecting only to 0V. The user has to ensure that no danger will occur because of the voltage between the return conductor and the protective ground!

1.3 Functional description

Powered by a single phase mains, the filament power supply generates a floating output voltage up to 40 V_{DC} and an output current up to 60 A.

The unit can be controlled via:

- front panel operation with rotary encoders and two displays (optional),
- a D-Sub 9 port with analog and digital signals (AIO),
- or digital interfaces (optional).

Below, the working principle of the device will be described.

The unit is equipped with a EMI/RFI filter after the mains input. Two single phase power relays separate the EMI/RFI filter from the power factor correction unit (PFC) and the inrush current limitation circuit.

A resonant switching inverter transforms the DC-Link voltage into a frequency modulated sinusoidal voltage. This control technology guaranties a low-loss switching of the power semiconductors. Isolated via transformer, the Diode rectifier provides an output current or voltage. Output voltage and current are measured precisely and are fed back to the control circuit, which controls and limits the output voltage and current corresponding to the set values. Normalized monitor voltages for voltage and current are provided for read back.

The power supply is turned **ON/OFF** with a switch installed at the front panel of the power supply.

2 Features

2.1 Operation states

The power supply has the following operation states:

POWER-ON Device initializes the connected hardware (Booting)

• LOCAL Device is controlled via the front panel

• ANALOG Device is controlled via the analog interface

• REMOTE Device is remote controlled via the digital interfaces

There are two modes for output voltage generation:

1. Constant voltage control CV: Control of output voltage according to its set value.

2. Constant current control CC: Control of output current according to its set value.

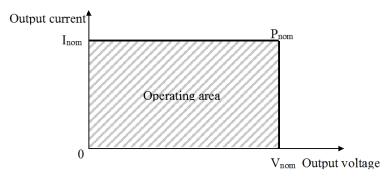


Figure 2: Operating area of the device

2.2 Monitoring

Temperature

Temperature is monitored at several points within the unit. Output voltage generation is stopped and the error "Overtemperature" is generated in case of external air temperature exceeds 50°C or an internal temperature exceeds a predefined limiting value. The measured temperature values can be read out via digital interfaces (see section 5 Interface Control).

WARNING!

The unit is equipped with an air filter. Depending on amount of dust in the environment and the number of operating hours, the filter has to be replaced on a regular basis. The filter can be purchased from iseg Spezialelektronik GmbH. The replacement can be done by the operator.

3 Pinout

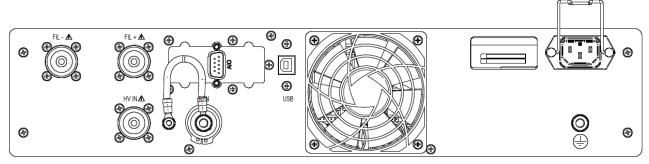


Figure 3: Back panel of the device with HV connectors

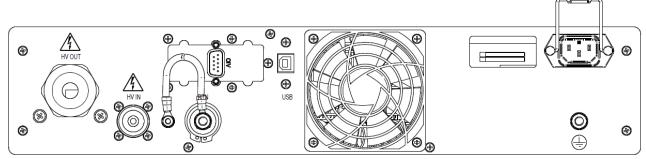


Figure 4: Back panel of the device with Cable

3.1 Supply

The power supply is connected to the mains using an IEC C14 connector on the back panel. A protective ground stud marked with "PE" can be connected to the grounding system. The thread of the protective ground stud PE is M6.

3.2 HV connection

DANGER!

Before operations at the load or the high voltage output of the power supply are started, the device has to be switched off, the discharge of residual voltage has to be finished and the high voltage output of the power supply must be properly grounded. Depending on the application residual voltages can be present for long time periods. These residual voltages can lead to severe injuries.

DANGER!

The user has to ensure that no danger will occur because of the voltage between the return conductor and the protective ground!

HV Input

Connecting an external high voltage generator to the "HV" connector, allows to elevate the low voltage power supply to a high potential.

The return conductor of the external high voltage generator can be isolated from the protective ground by opening the short circuit bridge between *X* and *0V* at the back panel of the power supply. The potential between the return conductor and the protective ground is not monitored by the device.

See also Figure 1: Electrical wiring of the high voltage part in section 3.2 Supply.

Option output connector

The floating low voltage output shall be connected via backplane connectors FIL+ and FIL- and attached cable to the load.

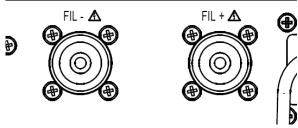


Figure 5 LV output connectors

Option output cable

The Standard for output currents above 10A is a pair (*FIL*+ and *FIL*-) of pre-assembled fed through high voltage high current cables. The *FIL*+ end is marked red. Figure 6: shows an example cable shows an example cable. Technical details and cable options are available on request.

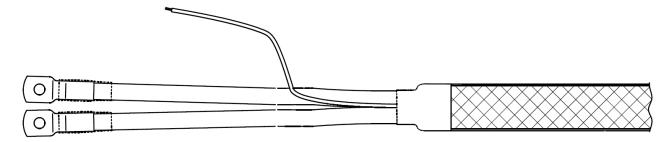


Figure 6: shows an example cable

3.3 USB / RS232 Interface

See section 5.1 USB and RS-232 Interface for the description of the USB and for the RS232 interface.

3.4 CAN Interface

See section 5.2 CAN Interface for the description of the CAN interface.

3.5 Ethernet Interface

See section 5.3 Ethernet Interface for the description of the Ethernet interface.

3.6 AIO Interface

See section 5.4 Description of the Analog I/O Interface (AIO) for the description of the Analog I/O interface (AIO)

4 Front Panel Control

Figure 7: Front panel with rotary encoder and displays (LCD), height of the device: 2U

4.1 Front panel control elements

Control Element	Function	
Mains switch ON/OFF	Turns the FPS device on or off.	
LED HV (green)	Lights when the device actively generates output voltage.	
Push button "HV ON/OFF"	Turns the voltage generation on or off.	
LED KILL ENABLE (yellow)	Lights when the device is operating in Kill Enable mode.	
Push button "KILL/ESC"	Clears the error shown on the displays, if possible. Switches between Kill Enable and Kill Disable mode.	
LED REMOTE (yellow)	Lights when the device is operated from the AlO or a digital interface.	
Push button "LOCAL/MENU"	Switches from remote control to local control (turns off voltage generation). Opens the menu when in local control mode.	
LED ERROR (red)	Lights when an error occurred.	
LEDs RxD/TxD (yellow)	Flashes on ongoing USB/RS-232/Ethernet communication.	
LED CV (green)	Lights when the device is operating in constant voltage mode.	
Display VOLTAGE	Shows the set voltage V_{set} (a small 's' blinks in the leftmost column), the measured voltage V_{meas} or the menu. If V_{set} or V_{meas} is shown and an error is pending, the error message and numerical values are displayed alternately for half a second.	
LED CC (green)	Lights when the device is operating in constant current mode.	
Display CURRENT	Shows the set current I_{set} (a small 's' blinks in the leftmost column), the measured current I_{meas} or the menu. If I_{set} or I_{meas} is shown and an error is pending, the error message and the numerical values are displayed alternately for half a second. When selected in the menu, the measured power P_{meas} is shown here instead the measured current.	
LED VOLTAGE (yellow)	Lights when the rotary encoder VOLTAGE can be used and flashes if the end of range was reached when turning the rotary encoder VOLTAGE.	
Rotary encoder VOLTAGE	Changes the set voltage V_{set} scrolls through the menu and changes most of the menu entries when the menu is open (exceptions are menu entries that relate to currents).	
LED CURRENT (yellow)	Lights when the rotary encoder CURRENT can be used and flashes if the end of range was reached when turning the rotary encoder CURRENT.	
Rotary encoder CURRENT	Changes the set current I _{set} , and changes the currents related menu entries when the menu is open.	

Table 4: Front panel control elements

4.2 Front Panel Operation

After powering the device on, it is booting and the integrated hardware is initialized. The device goes to HV-OFF mode.

In LOCAL operation mode, the set values for output voltage V_{SET} and heating current I_{SET} can be specified with the rotary encoders **VOLTAGE** and **CURRENT** respectively.

Generation of output voltage starts by pushing the **ON/OFF** button, and the device goes to **HV-ON** mode. While generating voltage, the green LED HV is illuminated.

WARNING!

The output voltage will ramp with the specified ramp speeds (voltage and current ramp) to the selected set voltage (constant voltage control) or set current (constant current control). Factory setting for the voltage ramp speed is $0.2 \cdot V_{\text{NOM}}$ per second and $1.0 \cdot I_{\text{NOM}}$ per second for the current ramp speed.

By pushing the **ON/OFF** Button again, the voltage generation is turned off. Both voltage and current ramps down with the specified voltage respective current ramp speed.

When the ramps down are finished, and the measured voltage is below 56 V, the green LED HV turns off and the device is in HV-OFF mode again.

4.3 Displays

The device has two eight digit displays for voltage and current as well as for Menu control.

In the HV-OFF state, the set values are shown on the display and can be changed with the rotary encoders **VOLTAGE** and **CURRENT**. These set values are stored in processor's EEPROM and are reloaded at the next power-on.

While displaying the set values for voltage and current, a small 's' is flashing at the left side of each display:

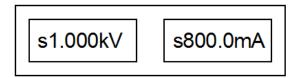


Figure 8: Set values on the displays

However, in HV-ON state, the measured values are shown. This can also be forced individually for each display in HV_OFF state also, by pressing the rotary encoder **VOLTAGE** or **CURRENT.** By pressing the same encoder a second time, the display switches back to the set values.

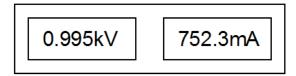


Figure 9: Measured values on the displays

By pressing the rotary encoder **VOLTAGE** or **CURRENT** in HV-ON state, the corresponding set value is displayed for a short time to allow exact adjustment.

If the set values are not changed, the device will show again the measured values after four seconds. By pressing the corresponding rotary encoder again, the device will show the measured values immediately.

If the output voltage is turned off, the displays show the measured values while ramping down. Four seconds after the measured voltage falls below 25% of V_{NOM} , the device displays the set values again.

4.4 Menu

In mode HV-OFF, the device menu can be opened by pressing the button LOCAL/MENU.

If a password protection has been set (menu Set Password), the programmed four-digit password needs to be given first. Each digit must be entered separately with the rotary encoder **VOLTAGE**. By pressing the rotary encoder **VOLTAGE**, the next digit is selected for input. If the correct password was entered, the menu opens, otherwise the menu is closed and the device goes back to LOCAL mode.

If no further button is pressed, the menu will be closed after 30 seconds. The menu can also be closed by pressing the button **KILL/ESC** or selecting the menu item "Close Menu".

The rotary encoder **VOLTAGE** is used to scroll through the menu. Pressing the rotary encoder **VOLTAGE** selects the displayed menu item. Settings can be changed by turning the active rotary encoder (either **VOLTAGE** or **CURRENT**, shown by the yellow LED). By pressing the active rotary encoder the changes are stored and the main menu is displayed again. To discard changes to a setting, **KILL/ESC** can be pressed and the display switches back to the main menu.

Display		Description			
Set	Limit V	Adjust the software voltage limit V _{lim} with the rotary encoder VOLTAGE. V _{set} will be limited to this value.			
Set	Limit I	Adjust the software current limit I _{lim} with the rotary encoder CURRENT. I _{set} will be limited to this value.			
Set	Ramp V	Adjust the voltage ramp speed with the rotary encoder VOLTAGE (min max. ramp speed in V/s).			
Set	Ramp I	Adjust the current ramp speed with the rotary encoder CURRENT (min max. ramp speed in A/s).			
Set	Control	Select either "LOCAL" or "AlO" with the rotary encoder VOLTAGE.			
		"LOCAL" Device is controlled by the front panel or on of the digital interfaces.			
		"AIO" Device is controlled by the Analog I/O.			
Set	Addr 488	Not available.			
Set	CAN	Select the CAN bus address with the rotary encoder VOLTAGE: 00 to 63. Only reasonable for devices with CAN interface.			
Set	Password	Locks the Menu access with a four-digit password. "0000" disables the Password function, every other combination enables the password function. Each digit must be entered separately with the rotary encoder VOLTAGE. By pressing the rotary encoder VOLTAGE, the next digit is selected for input.			
Show	Power	Select either "Current" or "Power" with the rotary encoder VOLTAGE.			
		"Current" Shows the measured current in the right display.			
		"Power" Shows the measured power in the right display.			
Quit	Menu	Leave Menu by pressing the rotary encoder VOLTAGE.			

Table 5: Menu

4.5 Errors

Some events turn of the voltage generation and must be cleared before turning it on again is possible. If one of these errors is active, the red LED ERROR lights and the displays alternating show the error message and the measured values for half a second.

The error can be cleared by pressing the "KILL/ESC" button on the front panel.

The list of errors is available in section 6.2 Error messages on the Displays.

5 Interface Control

Local and AIO operations

Depending on the option frontpanel, the following operation mode is activated after power on:

- Devices with frontpanel
 - "LOCAL" mode if set to "LOCAL" in Menu "Set Control"
 - "AIO" mode if set to "AIO" in Menu "Set Control"
- Devices without frontpanel: "AIO" mode (there is no "LOCAL" mode for these devices)

In "AIO" mode, the device can be controlled with the analog V_{set} and I_{set} signals and can be turned on and off with the INHIBIT and ON signals.

In "LOCAL" mode, the device can be turned off with "INHIBIT", but cannot be turned on with this signal, only with the "HV ON" button at the front panel.

Digital Interfaces

To control the device with a digital interface, the following preconditions apply:

Devices without frontpanel can switch from "AIO" mode to any digital interface by sending a command from that digital interface. Devices with frontpanel must be set to "LOCAL" mode in the "Set Control" menu first to be able to switch to a digital interface (They cannot switch from AIO to digital interface directly).

Listening Mode

With the Listening Mode, the device can be monitored (measured values and status signals) by any digital interface (USB, Ethernet, CAN and RS-232) while it is controlled via any other interface or local control. The interface stays in Listening Mode while only request commands are sent. Based on Listening Mode, the interface becomes fully active once a set command is sent over this interface.

Listening Mode can be enabled by the SCPI command ": CONFIGURE: INTERFACE: MODE" as described in the "SCPI_Programmers_Guide_en.pdf" (see section12 References).

Remote Control

If Listening Mode is not active, the device switches to "REMOTE" mode when receiving the first command from the digital interface. The yellow LED "REMOTE" is illuminated.

If HV-ON is active while the device is controlled via a remote interface, high voltage can be turned off by pressing the **HV ON/OFF** or **LOCAL/MENU** button. In this case the device switches to "LOCAL" mode. The device can now be controlled from the front panel. When receiving new commands from the interface, the device switches back to "REMOTE" mode.

INFORMATION

Devices with frontpanel which are set to "AIO" mode in the "Set Control" menu must be set back to "LOCAL" mode first, before they can be controlled by any digital interface.

5.1 USB and RS-232 Interface

WARNING!

Power off the device before connecting/disconnecting interface cables.

INFORMATION

If the device is equipped with both USB and RS-232 interface, only one of them should be connected at the same time.

The description of the USB and RS-232 interface as well as SCPI programming instructions are available in the "SCPI_Programmers_Guide_en.pdf" (see section 12 References).

Signal RS 232	HV-supply Sub-D9	Int.	PC Sub-D9	PC Sub-D25	Connection 3-lead cable
RxD	2		2	3	
TxD	3		3	2	
GND	5		5	7	
	4	ן (bridged)	4	20	ן (bridged)
	6	(bridged)	6	6	(bridged)
	8	ا (bridged)	8	5	☐ (bridged)

Table 6: PIN assignment RS232

5.2 CAN Interface

WARNING!

Power off the device before connecting/disconnecting interface cables.

The CAN interface is provided as a D-SUB 9 male connector on the back panel and has the following pinout:

Pin	Signal
2	CAN_L (CAN Low)
3	CAN_GND
5	CAN_Shield
7	CAN_H (CAN High)

Table 7: Pinout CAN Port

The device is compatible to the iseg EDCP CAN protocol, which is described in the "CAN_EDCP_Programmers-Guide.pdf" manual (see chapter 12 References).

5.3 Ethernet Interface

WARNING!

Power off the device before connecting/disconnecting interface cables.

The 100 MBit/s Full duplex Ethernet Interface is provided with a RJ-45 port at the back panel of the device.

The device can be connected to an Ethernet switch via a standard twisted pair cable. If it shall be connected to a PC directly, a crossover cable has to be used. The configuration of the Ethernet interface can be done with a web browser or the Lantronix Device Installer (see chapter 12 References).

Please change only the settings on the network page!

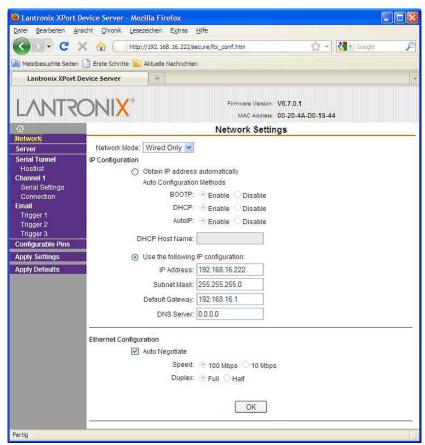


Figure 10: Ethernet Configuration

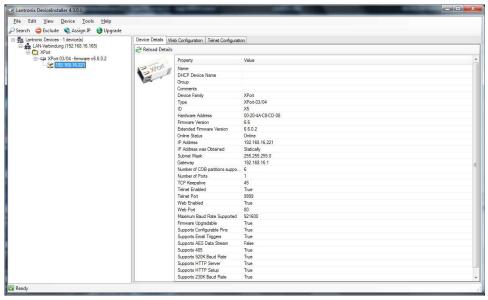


Figure 11: Lantronix Device Installer configuration program

The factory Ethernet settings are shown in the following table:

Setting	Default value
IP address	192.168.16.221
Net mask	255.255.255.0
Default Gateway	192.168.16.1
Command port	10001 (fixed)

Table 8: Factory Ethernet Settings

The connection can be tested with the ping command using the Windows Command Prompt or Linux terminal:

ping -n 4 192.168.16.221

Pinging 192.168.16.221 with 32 bytes data:

Answer from 192.168.16.221: bytes=32 time=4ms TTL=128

Ping statistic for 192.168.16.221:

Package: sent = 4, received = 4, lost = 0

Time in millisecond:

minimum = 1ms, maximum = 4ms, average = 1ms

 $For programming instructions, refer to the \verb"SCPI_Programmers_Guide_en.pdf" (see chapter 12 References).$

5.4 Description of the Analog I/O Interface (AIO)

WARNING!

Power off the device before connecting/disconnecting interface cables.

CAUTION!

All analog and digital inputs and outputs are electrically isolated from the protective ground. The user is responsible that no danger will occur due to a voltage between the AlO ground and the protective ground!

All control inputs and outputs are located at the male D-Sub 9 connector marked "AlO" on the back side of the device. The pin assignment of this connectors is shown in Table 9: Pinout AlO, male D-Sub 9 Port.

Pin	Labeling	Voltage Level	Description
Pin 1	GND		Return of pins 2-9
Pin 2	V _{MON_I}	(0 10 V)	Monitor of output current
Pin 3	INHIBIT		Digital input signal
Pin 4	V _{SET_I}	(0 10 V)	Set value of output current
Pin 5	CV / CC		Digital output signal
Pin 6	GND		Return of pins 2-9
Pin 7	V _{MON_V}	(0 10 V)	Monitor of output voltage
Pin 8	V _{SET_V}	(0 10 V)	Set value of output voltage
Pin 9	V _{REF}	10,2 V (10 V using 2x 10 kOhm potentiometer to control $V_{\text{SET},J}$ and $V_{\text{SET},V}$, see Figure 12: electrical wiring of the analog and digital in- and outputs)	Reference Voltage

Table 9: Pinout AIO, male D-Sub 9 Port

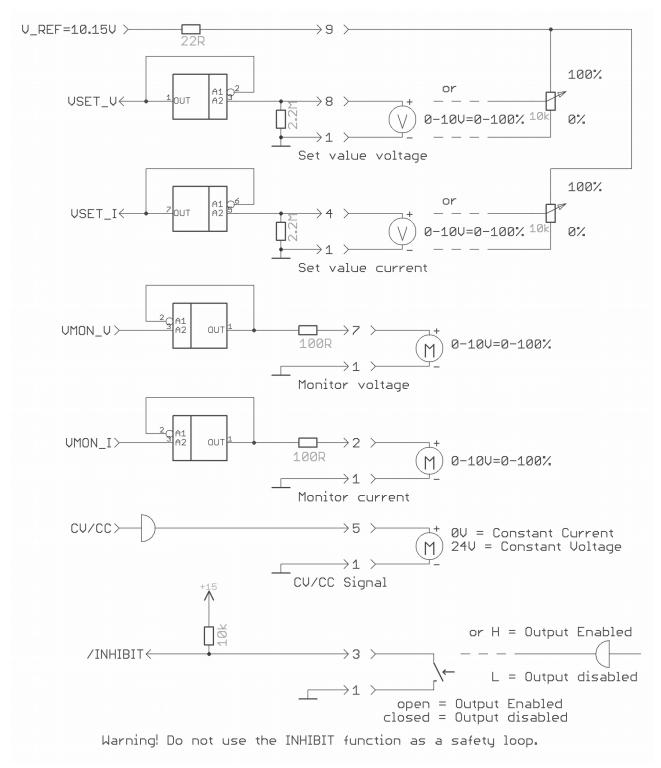


Figure 12: electrical wiring of the analog and digital in- and outputs

In AIO control mode the output voltage is turned on/off with the analog interface control signal INHIBIT.

INHIBIT

By applying a low level signal (0V or connected to signal ground) at pin 3 of the AIO port, the output voltage generation is deactivated. By applying a high level signal (8V...24V) at pin 3 connector "AIO" or leaving it open, output voltage generation is activated and the device will ramp up with the specified voltage or current ramp speed depending on the current state. The INHIBIT can deactivate the voltage generation when started from any interface or local control. However, turning on the output voltage with a positive edge of INHIBIT is only possible if AIO is the active interface.

Set values

A voltage between 0 – 10 V at Pin 8 (referenced to Pin 6) of the AIO port controls the output voltage between 0 and V_{NOM} . Similarly, the voltage at Pin 4 controls the output current between 0 and I_{NOM} .

Monitor voltages

The Monitor voltages (pin 2 and 7, referenced to Pin 6) are normalized to 0 – 10 V and are proportional to the output voltage and output current respective.

Constant Voltage / Constant Current

The digital output pin 5 of port AIO will be high (24 V) if the device operates in the state constant voltage control and will be low if the device operates in the state constant current control.

CAUTION!

Do not use the Inhibit function as a safety loop.

6 Errors

Some events are blocking and lead to turning off the voltage generation or even forbid turning on the voltage generation again. Examples are supply errors or overtemperature. Further explanations to these errors are described below.

6.1 Error acknowledgement

With the following actions an error can be reset or acknowledged:

- with a rising edge at the INHIBIT input signal when controlling by AIO (see section 5 Interface Control),
- with the SCPI command *CLS when controlling by USB/RS-232/Ethernet (see section 5 Interface Control),
- or by pressing the button KILL/ESC at the front panel (optional) (see section 5 Interface Control).

6.2 Error messages on the Displays

Blocking Event	Message on the D	isplays	Description
Event Supply Not Good	ERROR	SUPPLY	Either the external AC supply or one of the internal supplies is bad.
Event Temperature Not Good	OVERTEMP	ERATURE	Output voltage generation has been shut down because of over temperature
Event Emergency Off	EMERGEN	CY OFF	Output voltage generation has been shut down with Emergency Off.
Event Voltage Limit	OVP		Output voltage generation has been shut down because the Voltage Limit was reached.
Event Current Limit	CURRENT	LIMIT	Output voltage generation has been shut down because the Current Limit was reached.
Event Current Trip	CURRENT	TRIP	Output voltage generation has been shut down because the Current Set value I_{set} was reached in Kill Enable.
Event External Inhibit	EXTERNAL	INHIBIT	Output voltage generation is disabled due to an external inhibit (AlO).
Event Service Needed	SERVICE	NEEDED	Device either receives a firmware update or Device must be shipped to the factory for service.

Table 10 display error messages

6.3 Further errors

Unit does not show any signs of operation and the fans are not working

Unit does not provide output voltage but the fans are working

Check supply voltage, check environmental temperature $(T_A \le 50^{\circ}\text{C})$ External fuses trip during powering on.

Use fuses with slow characteristic (inrush current 10 A)

Unit does provide output voltage only for a short time

Check air filter

If these measures are not successful, this unit has to be checked by an authorized agent or shipped to the factory.

7 Maintenance

For compliance of the specified accuracy of set and monitor signals, the unit has to be recalibrated once a year.

Repair and maintenance may only be performed by trained and authorized personnel.

8 Dimensional drawings

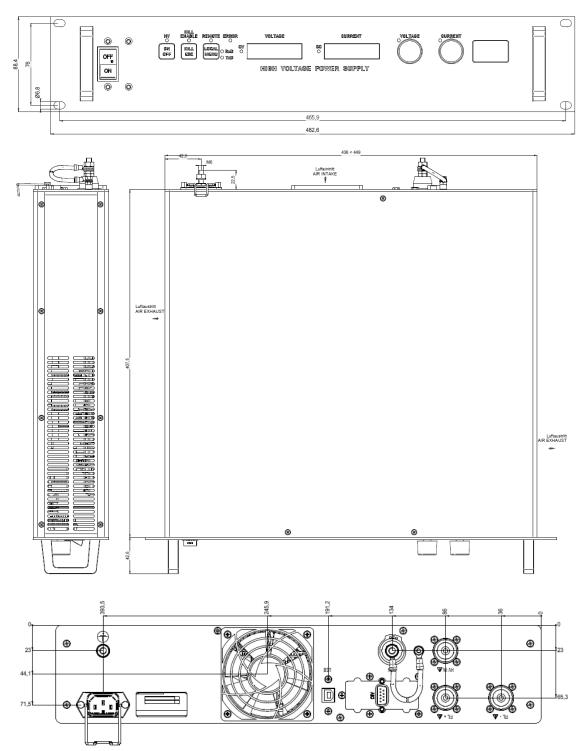


Figure 13 Exterior view - connector output

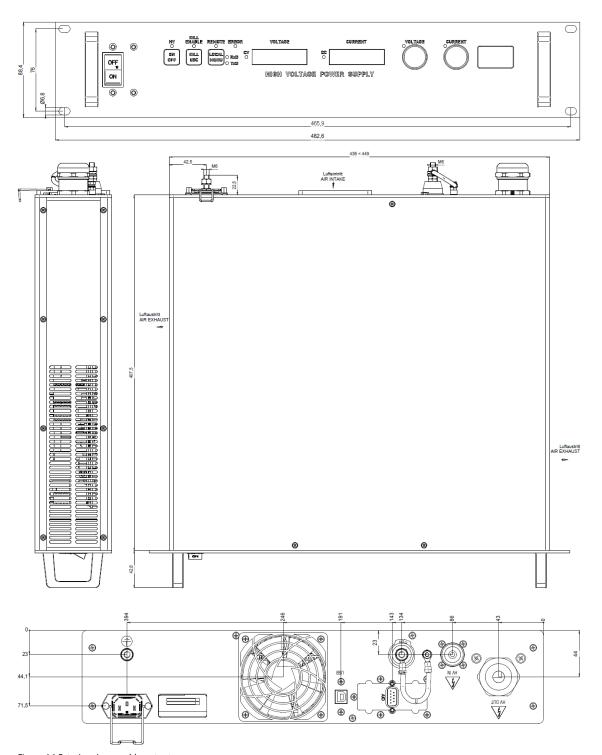


Figure 14 Exterior view – cable output

9 Connectors and PIN assignments

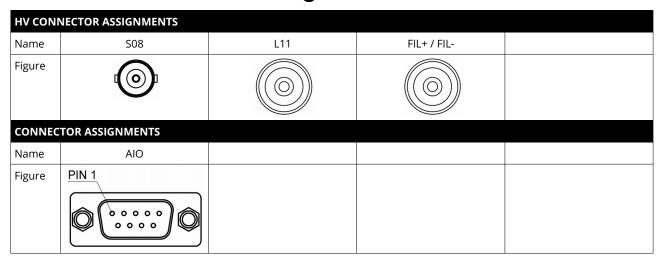


Table 11: HV connector assignment

CONNECTORS PART NUMBERS (manufacturer code / iseg accessory parts item code)						
POWER	SUPPLY SIDE	CABLE SIDE				
	\$08					
Socket	R317.580.000	Connector R317.005.000 / Z592474				
L11 (LEMO)						
Socket	Z514619	Connector	Z514620			
FIL+ / FIL-						
Socket	Z514619	Connector Z514620				

Table 12: connectors part numbers

10 Accessoires

CAUTION!

Only use genuine iseg parts like power cables, CAN cables and terminators for stable and safe operation.

ACCESSORY ITEM	ORDER ITEM CODE
Genuine power cable – EU Plug	Z592069

Table 13: Accessory items

11 Order guides

CABLE ORDER GUIDE					
POWER SUPPLY SIDE CONNECTOR	V _{max}	CABLE CODE	CABLE DESCRIPTION	LOAD SIDE CONNECTOR	ORDER CODE LLL = length in m (1)
SHV	≤ 5kV	04	HV cable shielded 30kV (HTV-30S-22-2)	open	SHV_C04-LLL
S08	≤ 8kV	04	HV cable shielded 30kV (HTV-30S-22-2)	open	S08_C04-LLL
L11	≤ 10kV	02	HV cable shielded 30kV (130660)	open	L11_C02-LLL

Notes:

¹¹ Length building examples: 10cm → 0.1, 2.5m → 2.5, 12m → 012, 999m → 999

Table 14: Cable Order

CONFIG	CONFIGURATION ORDER GUIDE (item code parts)								
F	012	008	d	005	000	0	5	03	00
Floating Low Voltage Power Supply	V _{nom}	I _{nom}	Generation output voltages	Isolation Voltage	Interface	Reserved	Power Supply	HV Connector	Customized Version
	three significante digits • 1V	three significante digits • A	d = DC	three significante digits • 1000 V	Sum of hex codes see Table 3: Options)	reserved	0 = Europa 230V 5 = wide range with PFC	03 = S08 13 = L11 see Table 11: HV connector assignment	00 = none
	For Examle: 012 = 12V	For Examle: 008 = 8A		For Examle: 005 = 5000V	For Examle: 004 = RS232				

Table 15: Configuration item code

12 References

For more information please use the following download links:

This document

https://iseg-hv.com/download/AC_DC/FPS/iseg_datasheet_FPS_en.pdf

SCPI Programmers-Guide

https://iseg-hv.com/download/SOFTWARE/isegSCPI/SCPI_Programmers_Guide_en.pdf

EDCP

https://iseg-hv.com/download/?dir=SOFTWARE/isegEDCP

Lantronix / XPORT Device Installer

https://www.lantronix.com/resources/product-index/?p=XPORT

CAN EDCP Programmers-Guide

https://iseg-hv.com/download/SOFTWARE/isegEDCP/CAN_EDCP_Programmers-Guide.pdf

FTDI-USB-Serial-Driver

https://iseg-hv.com/download/?dir=SOFTWARE/Tools

Labview - National Instruments

https://www.ni.com/

The Wireshark network analyzer

http://www.wireshark.org

13 Glossary

SHORTCUT	MEANING			
V_{nom}	nominal output voltage			
V _{out}	output voltage			
V _{set}	set value of output voltage			
V _{mon}	monitor voltage of output voltage			
V _{meas}	digital measured value of output voltage			
V _{p-p}	peak to peak ripple voltage			
V _{in}	input / supply voltage			
V_{type}	type of output voltage (AC, DC)			
V _{ref}	internal reference voltage			
V _{max}	limit (max.) value of output voltage			
$\Delta V_{out} - [\Delta V_{in}]$	deviation of V _{out} depending on variation of supply voltage			
$\Delta V_{out} - [\Delta R_{load}]$	deviation of V _{out} depending on variation of output load			
V _{bounds}	Voltage bounds, a tolerance tube $V_{set} \pm V_{bounds}$ around V_{set} .			
I _{nom}	nominal output current			
l _{out}	output current			
I _{set}	set value of output current			
I _{mon}	monitor voltage of output current			
I _{meas}	digital measured value of current			
I _{trip}	current limit to shut down the output voltage			
I _{in}	input / supply current			
I _{max}	limit (max.) value of output current			
I _{limit}	Current Limit.			
I _{bounds}	Current bounds, a tolerance tube $I_{set} \pm I_{bounds}$ around I_{set} .			
P _{nom}	nominal output power			
P _{in}	input power			
P _{in_nom}	nominal input power			
Т	temperature			
T _{REF}	reference temperature			
ON	HV ON/OFF			
/ON	HV OFF/ON			
СН	channel(s)			
HV	high voltage			
LV	low voltage			
GND	signal ground			
INH	Inhibit			
POL	Polarity			
KILL	KillEnable			

14 Warranty & Service

This device is made with high care and quality assurance methods. The standard factory warranty is 24 months. Please contact the iseg sales department if you wish to extend the warranty.

CAUTION!

Repair and maintenance may only be performed by trained and authorized personnel.

For repair please follow the RMA instructions on our website: www.iseg-hv.com/en/support/rma

15 Disposal

INFORMATION

All high-voltage equipment and integrated components are largely made of recyclable materials. Do not dispose the device with regular residual waste. Please use the recycling and disposal facilities for electrical and electronic equipment available in your country.

16 Manufacturer contact

iseg Spezialelektronik GmbH

Bautzner Landstr. 23 01454 Radeberg / OT Rossendorf GERMANY

FON: +49 351 26996-0 | FAX: +49 351 26996-21

www.iseg-hv.com | info@iseg-hv.de | sales@iseg-hv.de