

Programmer's guide

last change on: 2021-02-19

CAN - EDCP Programmers guide

Description of iseg Enhanced Device Control Protocol to access iseg hardware by CAN bus connection

Document history

Version	Date	Major changes
2.6	2021-02-17	Revised flexible groups part Added hardware option bits Added the power nominal, -set, and -measure items
2.5	2021-01-12	Fix "Crate Controller Control" register bit set Crate Enable Active
2.4	2020-03-04	Improve documentation
2.3	2020-02-06	Improve documentation, fixed, Safety Information
2.2	2019-11-08	Improve documentation, fixed
2.1	2017-08-30	Revised
2.0	2016-01-28	Relayouted documentation

Disclaimer / Copyright

Copyright © 2021 by iseg Spezialelektronik GmbH / Germany. All Rights Reserved.

This document is under copyright of iseg Spezialelektronik GmbH, Germany. It is forbidden to copy, extract parts, duplicate for any kind of publication without a written permission of iseg Spezialelektronik GmbH. This information has been prepared for assisting operation and maintenance personnel to enable efficient use.

The information in this manual is subject to change without notice. We take no responsibility for any mistake in the document. We reserve the right to make changes in the product design without reservation and without notification to the users. We decline all responsibility for damages and injuries caused by an improper use of the device.

Safety

This section contains important security information for the installation and operation of the device. Failure to follow safety instructions and warnings can result in serious injury or death and property damage.

Safety and operating instructions must be read carefully before starting any operation.

We decline all responsibility for damages and injuries caused which may arise from improper use of our equipment.

Depiction of the safety instructions

DANGER!

"Danger!" indicates a severe injury hazard. The non-observance of safety instructions marked as "Danger!" will lead to possible injury or death.

WARNING!

"Warning!" indicates an injury hazard. The non-observance of safety instructions marked as "Warning!" could lead to possible injury or death.

CAUTION!

Advices marked as "Caution!" describe actions to avoid possible damages to property.

INFORMATION

Advices marked as "Information" give important information.

Read the manual.

Attention high voltage!

Important information.

Intended Use

The device may only be operated within the limits specified in the data sheet. The permissible ambient conditions (temperature, humidity) must be observed. The device is designed exclusively to control high voltage systems as specified in the data sheet. It must only be used specified in Technical data. Any other use not specified by the manufacturer is not intended. The manufacturer is not liable for any damage resulting from improper use.

Qualification of personnel

A qualified person is someone who is able to assess the work assigned to him, recognize possible dangers and take suitable safety measures on the basis of his technical training, his knowledge and experience as well as his knowledge of the relevant regulations.

General safety instructions

- Observe the valid regulations for accident prevention and environmental protection.
- Observe the safety regulations of the country in which the product is used.
- Observe the technical data and environmental conditions specified in the product documentation.
- You may only put the product into operation after it has been established that the high-voltage device complies with the country-specific regulations, safety regulations and standards of the application.
- The high-voltage power supply unit may only be installed by qualified personnel.

Important safety instructions

DANGER!

This device is part of a high voltage supplying systems. High voltages are dangerous and may be fatal.

USE CAUTION WHILE WORKING WITH THIS EQUIPMENT. BE AWARE OF ELECTRICAL HAZARDS.

Always follow at the minimum these provisions:

- High voltages must always be grounded
- Do not touch wiring or connectors without securing
- Never remove covers or equipment
- Always observe humidity conditions
- Service must be done by qualified personnel only

WARNING!

RAMP DOWN VOLTAGES!

Before insertion or removal of crate controller, please make sure, that all voltages are ramped down, modules are switched off and power cord is disconnected.

CAUTION!

When controlling, with software, the high voltage systems, make sure that nobody is near the high voltage or can be injured.

INFORMATION

Please check the compatibility with the devices used.

Table of Contents

Document history	2
Disclaimer / Copyright	2
Safety	3
Depiction of the safety instructions	3
Intended Use	4
Qualification of personnel	4
General safety instructions	4
Important safety instructions	5
1 General information	10
1.1 Devices covered by this manual	10
1.2 CAN-Bus Implementation	11
2 Crate Controller CC24/23	12
2.1 Data types	12
2.2 Access rights	12
2.3 NMT CAN commands (broadcast messages)	12
2.4 Crate Controller commands	13
2.4.1 Crate Controller Uptime	13
2.4.2 Crate Controller Serial Number	13
2.4.3 Crate Controller Firmware Release	13
2.4.4 Crate Controller Firmware Name	13
2.4.5 Crate Controller Article Description	14
2.4.6 Crate Controller Control 2.4.7 Crate Controller Status	14 16
2.4.8 Crate Controller Event Status	17
2.4.9 Crate Controller Event Mask	17
2.4.10 Crate Controller Fan Speed Percent	18
2.4.11 Crate Power On/Off	18
2.4.12 Crate Chassis Identification	18
2.4.13 Crate Backplane Type	19
2.4.14 Crate Temperature Sensor	20
2.4.15 Crate Supply Measurement	20
2.4.16 Crate Supply Nominal	20
2.5 Statistic registers	21
2.5.1 CAN Bus Received	21
2.5.2 CAN Bus Receiver Overrun 2.5.3 CAN Bus Transmitted	21 21
2.5.4 CAN Bus Transmit Buffer Full	22
2.5.5 CAN Bus Dropped	22
2.5.6 CAN Bus Error	22
2.5.7 CAN Bus Throttle	22
2.5.8 CAN Bus Status	23
2.5.9 CAN Bus Disabled	23
2.5.10 CAN Bus Bitrate	23
2.6 Examples	24
3 Commands for High Voltage Devices	25
3.1 General information	25
3.2 General settings and options	25

3.3 Op	peration principle	26
	3.1 Remote interface control	26
	3.2 Channel and Module	27
	3.3 Terminology	27
	3.4 Channel operation modes	28
	3.5 Status and Event generation	29
	3.6 Additional current measuring range (Option)	29
3.3	3.7 Control and Status items	30
	3.3.7.1 Controls	30
	3.3.7.2 Status and events	30
2.5	3.3.7.3 Event status and event mask	30
3.3	3.8 Summarizing channel characteristics into groups	32
	3.3.8.1 Set Group	32
	3.3.8.2 Status Group	32 32
	3.3.8.3 Monitor Group	32
	3.3.8.4 Timeout Group 3.3.8.5 Responses on events (Soft-Kill features)	32
	ommunication via Interface	33
3.4	4.1 Enhanced Device Control Protocol EDCP	33
2	3.4.1.1 Data formats	35
	4.2 CAN Data Frame	36
	4.3 Summary of CAN data frame accesses via the NMT service identifier	38 40
5.4	4.4 Summary of CAN data frame accesses via the Front-end-address identifier3.4.4.1 List to access of the EDCP made for HV boards up to 255 channels EDCP Single Channel Accesses	40
	3.4.4.1 List to access of the EDCF fliade for AV boards up to 255 channels EDCF single Channel Accesses 3.4.4.2 EDCP Multiple Single Channels Access	40
	3.4.4.3 Module Access	44
	3.4.4.4 EDCP Group Accesses	46
	3.4.4.5 Important DCP Module Access	47
2 F D.		
	escription of data information per DATA_ID in EDCP	48
5.5	5.1 EDCP Single Access 3.5.1.1 Channel status (single/multiple single read-write access)	48 48
	3.5.1.1 Channel status (single/multiple single read-write access) 3.5.1.2 Channel status32 (single/multiple single read-write access)	48
	3.5.1.3 Channel control: (single write- and single/ multiple single read-write access)	51
	3.5.1.4 Channel control32: (single write- and single/ multiple single read-write access)	51
	3.5.1.5 Channel event status (single write- and single/ multiple single read-write access)	52
	3.5.1.6 Channel event status32 (single write- and single/ multiple single read-write access)	53
	3.5.1.7 Channel event mask (single write- and single/ multiple single read-write access)	55
	3.5.1.8 Channel event mask32 (single write- and single/ multiple single read-write access)	55
	3.5.1.9 Delayed trip time	57
	3.5.1.10 Delayed trip action (single/ multiple single read-write access)	57
	3.5.1.11 External channel inhibit	58
	3.5.1.12 VoltageRampPriority (single write- and single/ multiple single read-write access)	58
	3.5.1.13 Set voltage (single write- and single/ multiple single read-write access)	59
	3.5.1.14 Set current / trip (single write- and single/ multiple single read-write access)	59
	3.5.1.15 Voltage measurement (single/ multiple single read-write access)	60
	3.5.1.16 Current measurement (single/ multiple single read-write access)	60
	3.5.1.17 Voltage bounds (single write- / single/ multiple single read-write access)	61
	3.5.1.18 Current bounds (single write- / single/ multiple single read-write access)	61
	3.5.1.19 Nominal voltage (single/ multiple single read-write access)	62
	3.5.1.20 Nominal current (single/ multiple single read-write access)	62
	3.5.1.21 Nominal power (single/ multiple single read-write access)	62
	3.5.1.22 Current measurement range (single/ multiple single read-write access)	63
	3.5.1.23 VoltageBottom (single/ multiple single read-write access)	63
	3.5.1.24 VCT Coefficient (single/ multiple single read-write access)	64
	3.5.1.25 Temperature external (single/ multiple single read-write access)	64
	3.5.1.26 Resistor external (single/ multiple single read-write access)	65 65
	3.5.1.27 VoltageRampSpeedUp (single write- / single/ multiple single read-write access)	65 65
	3.5.1.28 VoltageRampSpeedDown (single write- / single/ multiple single read-write access) 3.5.1.29 CurrentRampSpeedUp (single write- / single/ multiple single read-write access)	65 66
	3.5.1.29 CurrentRampSpeedOp (single write-7 single/ multiple single read-write access) 3.5.1.30 CurrentRampSpeedDown (single write- / single/ multiple single read-write access)	66
	3.5.1.30 Currentkampspeedbown (single write- / single/ multiple single read-write access) 3.5.1.31 VoltageRampSpeedMin (single write- / single/ multiple single read-write access)	66
	3.5.1.32 VoltageRampSpeedMax (single write- / single/ multiple single read-write access)	67
	5.552 . Takabanan papadaman (ambid write / ambid/ mattiple ambid read write access)	07

3.5.1.33 CurrentRampSpeedMin (single write- / single/ multiple single read-write access)	67
3.5.1.34 CurrentRampSpeedMax (single write- / single/ multiple single read-write access)	67
3.5.1.35 PowerSet (single write- / single/ multiple single read-write access)	68
3.5.1.36 PowerMeasure (single/ multiple single read-write access)	68
3.5.1.37 Output mode (single/ multiple single read-write access)	69
3.5.1.38 Output polarity (single/ multiple single read-write access)	69
3.5.1.39 Output voltage mode (single/ multiple single read-write access)	69
3.5.1.40 Output current mode (single/ multiple single read-write access)	70
3.5.1.41 Output voltage mode list (single/ multiple single read-write access)	70
3.5.1.42 Output current mode list (single/ multiple single read-write access)	70
3.5.1.43 Group number (single/ multiple single read-write access)	71
3.5.2 EDCP Module Accesses	72
3.5.2.1 ModuleStatus (module read-write access)	72
3.5.2.2 ModuleStatus32 (module read-write access)	72
3.5.2.3 ModuleControl (module write- / read-write access)	75
3.5.2.4 ModuleControl32 (module write- / read-write access)	75
3.5.2.5 ModuleEventStatus (module write- / read-write access)	77
3.5.2.6 ModuleEventStatus32 (single/ multiple single read-write access)	77
3.5.2.7 ModuleEventMask (module write- / read-write access)	78
3.5.2.8 ModuleEventMask32 (module write- / read-write access)	79
3.5.2.9 ModuleEventChannelStatus (module write- / read-write access)	80
3.5.2.10 ModuleEventChannelStatus32 (module write- / read-write access)	80
3.5.2.11 ModuleEventChannelMask (module write- / read-write access)	81
3.5.2.12 ModuleEventChannelMask32 (module write- / read-write access)	81
3.5.2.13 ModuleEventGroupStatus (module write- / read-write access)	82
3.5.2.14 ModuleEventGroupMask (module write- / read-write access)	83
3.5.2.15 VoltageRampSpeed (module write- / read-write access)	84
3.5.2.16 CurrentRampSpeed – current controlled modules only (module write- / read-write access)	84
3.5.2.17 VoltageMax – OPTION (module read-write access)	85
3.5.2.17 Voltage Max Of Fior (module read-write access)	86
3.5.2.19 Supply24 (module read-write access)	86
3.5.2.20 Supply5 (module read-write access)	87
	87
3.5.2.21 BoardTemperature (module read-write access)	87
3.5.2.22 Threshold to arm the errors detection (module write / read- write access)	88
3.5.2.23 Serial number (module read-write access)	
3.5.2.24 Firmware release (module read-write access)	88
3.5.2.25 Bit rate (module write- / read-write access)	88
3.5.2.26 Firmware Name (module read-write access)	89
3.5.2.27 ADC SamplesPerSecond SPS (module write- / read-write access)	90
3.5.2.28 DigitalFilter (module write- / read-write access)	90
3.5.2.29 ChannelNumber (module read access)	90
3.5.2.30 ArticleDescription (module read access)	91
3.5.2.31 ModuleOption (module read access)	91
3.5.2.32 ModuleOptionSpec (module read access)	93
3.5.2.33 ModuleCommMode (module write access)	94
3.5.3 EDCP Group Accesses	95
3.5.3.1 SetGroup	96
3.5.3.2 StatusGroup	98
3.5.3.3 MonitoringGroup	100
3.5.3.4 DelayedTripGroup	102
3.5.3.5 Request Temperatures and Supplies (group write access)	104
3.5.3.6 GroupVoltageLimit – OPTION (module read-write access)	104
3.5.3.7 GroupCurrentLimit – OPTION (module read-write access)	104
3.5.3.8 VoltageSetAllChannels (group write access)	105
3.5.3.9 Current-Trip/Set-AllChannels (group write access)	105
3.5.3.10 SetOnOffAllChannels (group write- / read-write access)	106
3.5.3.11 SetEmergencyAllChannels (group write- / read-write access)	107
3.5.3.12 EventStatusVoltageLimitAllChannels (group write- / read-write access)	108
3.5.3.13 EventStatusCurrentLimitAllChannels (group write- / read-write access)	109
3.5.3.14 EventStatusCurrentTripAllChannels (group write- / read-write access)	110
3.5.3.15 EventStatusExternalInhibitAllChannels (group write- / read-write access)	111
3.5.3.16 Set ON / OFF channels extender (group write- / read-write access)	112
3.5.3.17 Set EMERGENCY channels extender (group write- / read-write access)	113

5 Manufacturer contact	125
4.5 Appendix E – Literature references	125
save bit	124
4.4 Appendix D – Programming flowchart to store the configurations of the module permanently with help of Gene	eral state
4.3 Appendix C – Programming flowchart to store the settings permanently with help of General state save bit	123
4.2 Appendix B – Diagram of operating modes	122
4.1 A – Shortcuts	121
4 Appendix	121
3.5.5.3 Module events	119
3.5.5.2 Group events (in preparation)	119
3.5.5.1 Channel events	118
3.5.5 Events	118
3.5.4.2 Log-on / Log-off Front-end device at superior layer (module active- / write access)	116
3.5.4.1 GeneralStatus (group write- / read-write / active access)	114
3.5.4 Important DCP Module Accesses	114

1 General information

This Manual describes for one the CAN - EDCP crate controller commands and for the other the CAN - EDCP commands for High Voltage Devices.

1.1 Devices covered by this manual

All devices described in this manual have in common, that they support the CAN - EDCP (Enhanced device communication protocol for Controller Area Network).

- CC24 is the crate controller card for the 19" master crates with the iCS-2 (iseg Communication Server 2)
- CC23 is the crate controller card for the 19" slave crates
- EHS combines standard or high precision, high voltage sources in 19" format with fix or mixed output polarity, up to 32 channels per module are possible
- EHS FLEX combines standard or high voltage sources in 19" format with fix or mixed output polarity, up to 48 channels per module are possible
- EHS STACK combines standard or high precision, high voltage sources in 19" format with fix or mixed output polarity, up to 16 channels per module are possible
- EBS combines standard, bipolar current sink and high voltage sources in 19" format, up to 24 channels per module are possible
- · EDS combines standard high voltage sources with fix output polarity, up to 48 channels per module are possible
- NHS combines standard or high precision high voltage sources in NIM format with fix or mixed output polarity, up to 6 channels per module are possible
- NHR combines standard or high precision high voltage sources in NIM format with switchable output polarity, up to 4 channels per module are possible

1.2 CAN-Bus Implementation

The data frame structure is matched to the message frame of the standard-format according to CAN specification 2.0B.

The data frame of the EDCP will be transferred as data word with n bytes length in the data field of the CAN frame according to the specific demand of the related access. Therefore this results into a Data Length Code (DLC) of the CAN-protocol of n.

The 11 bit identifier of the CAN protocol will be used for addressing of the Front-end devices and classification of data write, data request, data reply and alarm messages.

In following every bit of the 11 bit identifier will be described:

ID10 (C)	1	Crate controller command
	0	High voltage source command
ID9 (P)	1	Alarm
	0	Normal messages
Notes:		
ID8 to ID3 (A5A0)	allow the add	dressing of 64 Front-end devices (ID3: Address bit 0;; ID8: Address bit 5)
ID2 (NMT)	1	Send a broadcast message defined as network management message (NMT)
	0	Normal or alarm message
ID1	1	Reply of a data request
	0	No data request
ID0 (DATA_DIR)	1	Data request
	0	Data write

That means all "even" CAN-ports (Identifier) are interpreted as 'Write ports' all "odd" CAN ports as 'Read ports'.

Only if the Front-end device is not registered at the controller or if it does not receive valid data during a longer time period (ca. 1 min), then it will actively send the registration frame with DATA_DIR = 1. The RTR Bit is always set to zero.

In one CAN segment modules with unequal identifier and equal bit rate are allowed only. The factory fixed bit rate is written on the sticker at the side panel.

2 Crate Controller CC24/23

2.1 Data types

UI1: One byte unsigned integer (8 bit)

CHAR: One ASCII character (8 bit)

UI4: Four byte unsigned integer (32 bit)

R4: Four byte floating point IEEE-754, single precision

All data on the CAN bus is in big endian format, i.e. for UI4 and R4, the highest data byte is transmitted first.

2.2 Access rights

R = Read only: the register can only be read

R/W = Read/write: the register can be read and written R/C = Read/clear: the register can be read and cleared

2.3 NMT CAN commands (broadcast messages)

The following NMT commands (CAN-ID 0x004) are handled by the Crate Controller:

- NMT_DATAID_START (0xC4)
 - Switches from stop mode to normal operation
 - Message is forwarded to the backplane (and therefore to the modules)
- NMT_DATAID_STOP (0xC8)
 - Switches from normal operation to stop mode to allow the command NMT_RESET_CAN
 - Message is forwarded to the backplane (and therefore to the modules)
- NMT_DATAID_RESET_CAN (0xCC)
 - Re-initializes all CAN interfaces
 - Clears all transmit buffer
 - Clears all statistic registers
 - Message is forwarded to the backplane (and therefore to the modules)
 - Re-initializes the modules CAN interface
 - Modules starts to send their Log-On message

A short delay (10 milliseconds) should be kept between the commands NMT_STOP and NMT_RESET_CAN, so that all messages can be forwarded correctly to the modules.

2.4 Crate Controller commands

2.4.1 Crate Controller Uptime

Crate Controller Uptime 0x1113 UI4 R

This register returns the crate controllers uptime in seconds.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1113				
Answer	0x604	6	0x1113	Crate Uptime UI4			

2.4.2 Crate Controller Serial Number

Crate Controller Serial Number 0x1200 UI4 R

This register returns the crate controllers serial number.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1200				
Answer	0x604	6	0x1200	Crate Serial Number UI4			

2.4.3 Crate Controller Firmware Release

Crate Controller Firmware Release 0x1201 UI1[4] R

This register returns the crate controllers firmware release.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1201				
Answer	0x604	6	0x1201	Release 1	Release 2	Release 3	Release 4

2.4.4 Crate Controller Firmware Name

Crate Controller Firmware Name 0x1203 CHAR[6] R

This register returns the crate controllers firmware name.

Access	CAN-ID	DLC	DATA_ID	Data_5	Data_4	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1203						
Answer	0x604	8	0x1203	'E'	'C'	'H'	'4'	'x'	'A'

2.4.5 Crate Controller Article Description

Crate Controller Article Description 0x1209 CHAR[] R

This register returns the crate controllers article description. Depending on the length of the article description, multiple CAN messages may be sent. The description is terminated by a zero character.

Access	CAN-ID	DLC	DATA_ID	Data_5	Data_4	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1209						
Answer	0x604	38	0x1209	0	'C'	'C'	'2'	'4'	0

2.4.6 Crate Controller Control

Crate Controller Control 0x1A01 UI4 R/W

The register Crate Controller Control sets crate functions.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0	
Request	0x601	2	0x1A01					
Answer	0x604	6	0x1A01	Crate Control UI4				
Set	0x600	6	0x1A01	Crate Control U	14			

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
res (0)	res (0)	do Set Legacy Mode	set Legacy Mode	do Set Auto Power On	set Auto Power On	do Set Crate Enable Active	set Crate Enable Active
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	res (0)
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	res (0)
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	do Clear Statistic	do Clear Events

Status Bit	Description
do Clear Events	Clears the crates event status register. This bit can only be written, it always reads zero.
doClear Statistic	Clears the crates statistic registers. This bit can only be written, it always reads zero.
set Crate Enable Active	If this bit is set to one, the high voltage channels can only be turned on, if the pin Crate Enable at the CONTROL connector is pulled high. This bit can only be changed if the backplane is powered off and the bit do Set Crate Enable Active is set to one.
do Set Crate Enable Active	This bit masks the bit set Crate Enable Active. If this bit is zero, the bit set Crate Enable Active is ignored. This bit can only be written, it always reads zero.
set Auto Power On	If this bit is set to one, the backplane is automatically turned on after the mains line is plugged in. Otherwise, the backplane stays off and must be turned on by the POWER ON switch or by remote control. This bit can only be changed if the bit do Set Auto Power On is set to one.
do Set Auto Power On	This bit masks the bit set Auto Power On. If this bit is zero, the bit set Auto Power On is ignored. This bit can only be written, it always reads zero.
set Legacy Mode	If this bit is set to one, the controller operates in Legacy Mode. In this mode, the modules can be controlled by CAN bus connected to CAN1 or CAN2. Note that in this mode, the internal services like isegHAL, iCSservice, SNMP, EPICS can not be used to control the modules. This bit can only be changed if the backplane is powered off and the bit do Set Legacy Mode is set to one.
do Set Legacy Mode	This bit masks the bit set Legacy Mode. If this bit is zero, the bit set Legacy Mode is ignored. This bit can only be written, it always reads zero.

Table 1

2.4.7 Crate Controller Status

Crate Controller Status 0x1A00 UI4 R

The Crate Controller Status contains the *actual* status. The bits will be set or reset depending on the crates status.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1A00				
Answer	0x604	6	0x1A00	Crate Status UI4			

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
res (0)	res (0)	res (0)	res (0)	CAN Bus Error Apalis	CAN Bus Error Backplane	CAN Bus Error CAN1	CAN Bus Error CAN2
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
res (0)	res (0)	Crate Fast Off	Crate Enabled	Shut Down	High Voltage On	Power Fail	Power On
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Bit15 res (0)	Bit14 res (0)	Bit13 res (0)	Sum Error	Bit11 High +3.3 CC	Bit10 Low +3.3 CC	Bit09 High +5 CC	Bit08 Low +5 CC

Status Bit	Description
CAN Bus Error Apalis	The internal CAN bus between the Crate Controller and the Apalis is in error state
CAN Bus Error Backplane	The internal CAN bus between the Crate Controller and the HV modules is in error state
CAN Bus Error CAN1	The external CAN bus connected to CAN1 is in error state
CAN Bus Error CAN2	The external CAN bus connected to CAN2 is in error state
High-Voltage-On	Backplane is powered on and at least one channel within the crate has Status.isOn or measured voltage > 63 V The front panel LED HV-ON is derived from this bit.
Power-On	Backplane is powered on (modules are supplied with voltage) The front panel LED Status lights green when Power-On is set and no supply error exists. The front panel LED Status lights red when Power-On is set and a supply error exists.
Power-Fail	AC line power fail detected. Crate without UPS: high voltage is turned fast off Crate with UPS: high voltage is turned off with ramp after the wait time
High Temperature	At least one modules or the crate controller have high temperature. The high voltage is turned off with the configured voltage ramp speed.
Shut Down	If the front button POWER ON is pressed for more than 10 seconds, this bit is set for approx. 1 minute. This is used to perform a shut down of the embedded crate computer.
Sum Error	This bit is set, whenever one of the bits Power Fail, High Temperature, Service, High Supply, Low Supply or Crate Fast Off is set or if Crate Enabled is cleared.
Service	A fatal error occurred. Contact service.

Table 2

Status Bit	Description
High Supply X	Measured voltage X exceeds the upper limit.
Low Supply X	Measured voltage X exceeds the lower limit.
Crate Enabled	If the crate is enabled, it is possible to turn on high voltage for all channels. The crate is enabled, if the Crate Control bit set Crate Enable Active is not set, or if the CONTROL pin Crate Enable is pulled high.
Crate Fast Off	If the CONTROL pin Crate Fast Off is turned high, the high voltages are shut down without ramp.

2.4.8 Crate Controller Event Status

Crate Controller Event Status 0x1A02 UI4 R/C

The Event Status bits are set together with the status bits. Unlike Status bits, Event Status bits are not reset automatically. The have to be reset by the user, by writing an 1 to this event bit. All Event Status bits are reset by the Crate Control bit do Clear.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0	
Request	0x601	2	0x1A02					
Answer	0x604	6	0x1A02		Crate Even	t Status UI4		
Clear	0x600	6	0x1A02	Crate Event Status UI4				

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	res (0)	res (0)
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
res (0)	res (0)	res (0)	res (0)	Shut Down	High Voltage On	Power Fail	Power On
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Bit15 res (0)	Bit14 res (0)	Bit13 res (0)	Bit12 Sum Error	Bit11 High +3.3 CC	Bit10 Low +3.3 CC	Bit09 High +5 CC	Bit08 Low +5 CC

2.4.9 Crate Controller Event Mask

Crate Controller Event Mask 0x1A3 UI4 R/W

The Event Mask is defined for compatibility to the module EDCP command set, but not used at the moment.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0	
Request	0x601	2	0x1A03					
Answer	0x604	6	0x1A03		Crate Ever	nt Mask UI4		
Set	0x600	6	0x1A03		Crate Ever	nt Mask UI4		

R

2.4.10 Crate Controller Fan Speed Percent

Crate Controller Fan Speed Percent 0x1A04 R4

This register returns the crates fan speed in percent (0...100). The fan speed is regulated according to the maximum crate temperature. The maximum temperature is collected over all modules and the crate controller. The maximum fan speed is reached at approx. 45° C.

Access	CAN-ID	DLC	DATA_ID	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1A04				
Answer	0x604	6	0x1A04	Crate Fan Speed R4			

2.4.11 Crate Power On/Off

Crate Power On/Off 0x1A05 UI1 R/W

This register controls the crates power on (1) or off (0) function.

Access	CAN-ID	DLC	Data_ID	Data_0
Request	0x601	2	0x1A05	
Answer	0x604	3	0x1A05	0x00
Set On	0x600	3	0x1A05	0x01
Set Off	0x600	3	0x1A05	0x00

2.4.12 Crate Chassis Identification

Crate Controller Chassis Identification 0x1A06 UI6 R

This register contains the 1-Wire serial number that is read from the crate chassis. This number is an unique number for every crate. The six bytes are the 1-Wire serial number without manufacturer code and without CRC.

This register is filled once the backplane was turned on for at least ten seconds.

Access	CAN-ID	DLC	DATA_ID	Data_5	Data_4	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x1A06						
Answer	0x604	8	0x1A06		C	rate Chassis Id	dentification U	16	

2.4.13 Crate Backplane Type

Crate Backplane Type 0x1A07 UI2 R/C

This register contains the backplane type for the master and all slave crates.

Access	CAN-ID	DLC	DATA_ID	Data_1	Data_0
Request	0x601	2	0x1A07		
Answer	0x604	4	0x1A07	Crate Back	kplane Type UI2
Clear	0x600	2	0x1A07		

A write access to this register forces a new scan of the backplane type register. It takes approx. two seconds to scan the system and fill the register again.

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
*							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Bit15 Reserved	Reserved	Reserved	Green Slave 5	Green Slave 4	Green Slave 3	Green Slave 2	Green Slave 1
			Green	Green	Green	Green	Green

Bit meaning		
0	Backplane type iseg:	backplane is sequential
1	Backplane type wiener:	backplane is not sequential
Bit position		
0	Master crate	
15	Slave crates on CAN line yellow	= (1 = Slave 0, 2 = Slave 1,)
812	Slave crates on CAN line green	= (8 = Slave 0, 9 = Slave 1,)

2.4.14 Crate Temperature Sensor

Crate Temperature Sensor 0x2001 R4 R

This register contains the actual temperature for different sensors.

Sensor 0 and 1 are placed at the crate controller. Sensor 2 is the maximum temperature in the crate (collected over all modules and the crate controller). The maximum temperature is used to control the crates fan speeds.

If the request is done with DLC = 2, all temperature sensors are returned in three CAN messages. If the request is done with DLC = 3 and a specific sensor, only this sensor is returned.

Access	CAN-ID	DLC	DATA_ID	Sensor	Data_3	Data_2	Data_1	Data_0	
Request	0x601	2	0x2001						
Answer	0x604	7	0x2001	0x00		Crate Temperature 0 R4			
	0x604	7	0x2001	0x01		Crate Temperature 1 R4			
	0x604	7	0x2001	0x02		Crate Ten	nperature 2 R4		
					'				
Request	0x601	3	0x2001	0x01					
Answer	0x604	7	0x2001	0x01		Crate Ten	nperature 0 R4		

2.4.15 Crate Supply Measurement

Crate Supply Measurement 0x2002 R4 R

This register contains the measured supply voltages.

If the request is done with DLC = 2, all supply measurement values are returned in consecutive CAN messages. If the request is done with DLC = 3 and a specific supply number, only this measurement value is returned.

Access	CAN-ID	DLC	DATA_ID	Supply	Data_3	Data_2	Data_1	Data_0	
Request	0x601	2	0x2002						
Answer	0x604	7	0x2002	0x00		Crate Supply Measurement 0 R4			
	0x604	7	0x2002	0x01					
	0x604	7	0x2002	0x08		Crate Supply	Measurement	8 R4	

2.4.16 Crate Supply Nominal

Crate Supply Nominal 0x2003 R4 R

This register contains the nominal supply voltages.

If the request is done with DLC = 2, all supply nominal values are returned in consecutive CAN messages. If the request is done with DLC = 3 and a specific supply number, only this nominal value is returned.

Access	CAN-ID	DLC	DATA_ID	Supply	Data_3	Data_2	Data_1	Data_0
Request	0x601	2	0x2003					
Answer	0x604	7	0x2003	0x00	Crate Supply Nominal 0 R4			
	0x604	7	0x2003	0x01				
	0x604	7	0x2003	0x08	Crate Supply Nominal 8 R4			

2.5 Statistic registers

For each CAN bus, multiple statistic registers are kept. The Crate Controller owns four CAN busses, which are numbered the following way:

- 0) CAN PC
- 1) CAN Backplane
- 2) CAN 2
- 3) CAN 1

The existing statistic registers are described below.

If a request message without a CAN bus number (DLC = 2) is received, the statistic register for all four CAN busses are returned.

The statistic counter are incremented by the crate controller and can be reset by the NMT command NMT_CAN_RESET together with the CAN interfaces or by the Crate Control bit do Clear Statistic.

2.5.1 CAN Bus Received

CAN Bus Received 0x2040 UI4 R

This register counts the received messages for the given CAN bus.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0
Request	0x601	3	0x2040	00				
Answer	0x604	7	0x2040	00		Received M	essages UI4	

2.5.2 CAN Bus Receiver Overrun

CAN Bus Receiver Overrun 0x2041 UI4 R

This register counts the receive buffer overruns for the given CAN bus. A receive buffer overrun occurs, if a CAN message could not be read in time from the CAN bus.

This register should always be zero.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0
Request	0x601	3	0x2041	00				
Answer	0x604	7	0x2041	00	Receiver Overrun Messages UI4			14

2.5.3 CAN Bus Transmitted

CAN Bus Transmitted 0x2042 UI4 R

This register counts the transmitted messages for the given CAN bus.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0
Request	0x601	3	0x2042	00				
Answer	0x604	7	0x2042	00		Transmitted	Messages UI4	

2.5.4 CAN Bus Transmit Buffer Full

CAN Bus Transmit Buffer Full 0x2043 UI4 R

This register counts the messages, that could not be sent to the given CAN bus because of full transmit buffer.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0
Request	0x601	3	0x2043	00				
Answer	0x604	7	0x2043	00		Transmit Bu	uffer Full UI4	

2.5.5 CAN Bus Dropped

CAN Bus Dropped 0x2044 UI4 R

This register counts the messages that were received from the given CAN bus and could not be routed because of unclear destination.

This register should always be zero.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0
Request	0x601	3	0x2044	00				
Answer	0x604	7	0x2044	00		Dropped M	essages UI4	

2.5.6 CAN Bus Error

CAN Bus Error 0x2045 UI4 R

This register is incremented every second when the given CAN bus is in error state.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0
Request	0x601	3	0x2045	00				
Answer	0x604	7	0x2045	00		Error Sec	onds UI4	

2.5.7 CAN Bus Throttle

CAN Bus Throttle 0x2046 UI4 R

This register counts the number of generated throttle messages for the given CAN bus.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0	
Request	0x601	3	0x2046	00					
Answer	0x604	7	0x2046	00	Throttle Messages UI4				

2.5.8 CAN Bus Status

CAN Bus Status 0x2047 UI4 R

This register holds the current status for the given CAN bus.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0	
Request	0x601	3	0x2047	00	1	2	3	4	
Answer	0x604	7	0x2047	00	Bus Status UI4				

The CAN Bus Status register contains the following information:

- Receiver bus status: Ok (0), Warning (1), Error (2), Bus off (3)
- Transmitter bus status: Ok (0), Warning (1), Error (2), Bus off (3)
- CAN hardware activated
- CAN hardware synchronized with CAN bus
- CAN hardware in special mode (initializing, sleep, listen-only, loopback).
 These bits should not be set in normal operation conditions.

The CAN hardware status is refreshed at the time of the request.

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
		Loopback	Listen Only	Enabled	Synchronized	Sleeping	Initializing
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
		Transmitter bu	s status (0 = Ok,	1 = Warning, 2 =	Error, 3 = Bus of	f)	
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Dicor	Dicoo		status (0 = Ok, 1			Bicor	Bittoo
					,		

2.5.9 CAN Bus Disabled

CAN Bus Disabled 0x2048 UI4 R

This register counts the number of dropped messages because the given CAN bus is not enabled (e.g. backplane is off).

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0	
Request	0x601	3	0x2048	00					
Answer	0x604	7	0x2048	00	Disabled Messages UI4				

2.5.10 CAN Bus Bitrate

CAN Bus Bitrate 0x2049 UI4 R

This register holds the current bit rate for the given CAN bus.

Access	CAN-ID	DLC	DATA_ID	CAN bus	Data_3	Data_2	Data_1	Data_0	
Request	0x601	3	0x2049	00					
Answer	0x604	7	0x2049	00	Bitrate UI4				

2.6 Examples

CC = Crate-Controller, PC = Controlling PC

Message	Direction	CAN-ID	DLC	Data ID	Data	Data	Data	Data
Log-On Request	CC → PC	601	3	D8 00	2E			
Log-On Confirmation	CC → PC	600	2	D8 01				
Status Request	PC → CC	601	2	1A 00				
Status Answer	CC → PC	604	6	1A 00	00	00	00	00
Crate Power On	PC → CC	600	3	1A 05	01			
Crate Power Off	PC → CC	600	3	1A 05	00			
Fan Speed Request	PC → CC	601	2	1A 04				
Fan Speed Answer	CC → PC	604	6	1A 04	40	A0	00	00

Table 3

Request Temperatures and Supplies (group request)

Message	CAN-ID	DLC	DataID	Channel	Data	Data	Data	Data	Value
Request all Temperatures	601	2	20 01						
Temperature 0	604	7	20 01	00	41	EF	0D	В0	29.9 °C
Temperature 1	604	7	20 01	01	41	ED	66	30	29.7 °C
Temperature 2	604	7	20 01	02	41	EF	0D	В0	29.9 °C
Request all Measured Supplies	601	2	20 02						
Backplane +24	604	7	20 02	00	41	BE	75	98	23,8 V
Reserved	604	7	20 02	01	00	00	00	00	0 (res)
Backplane +5	604	7	20 02	02	40	A0	51	EC	5,01 V
Reserved	604	7	20 02	03	00	00	00	00	0 (res)
Reserved	604	7	20 02	04	00	00	00	00	0 (res)
Supply +5	604	7	20 02	05	40	9F	A2	1B	4,99 V
Supply +3.3	604	7	20 02	06	40	53	2E	1C	2,99 V
Reserved	604	7	20 02	07	00	00	00	00	0 (res)
Battery + 24	604	7	20 02	08	41	D0	СС	CD	26,1 V

Table 4

3 Commands for High Voltage Devices

3.1 General information

Each single HV channel is independently controllable. The modules are software controlled via CAN-Interface through a PC or similar controller.

Using an iseg crate combined with a CC24 controller or an iCSmini as stand alone iseg Communication Server WEB-services, Remote-service, EPICS and SNMP are possible via Ethernet.

We offer a comfortable control programs:

Control program	Operating system	Interfaces	Protokoll, Standard
isegControl2	Windows, Linux and MAC OS	CAN, Ethernet	EDCP, WS
isegControl1	Windows and Linux	CAN, Ethernet	EDCP, OPC DA, SNMP
isegCANHVControl	Windows	CAN	EDCP

Using the w-ie-ner Mpod crate it is possible to control up to 10 modules via Ethernet-SNMP Interface.

3.2 General settings and options

Please note that there are additional hardware features for these devices in this manual called **OPTION**. The use of an access without the hardware implementation will be described under **OPTION** in manual.

Devices with different bit rate settings do not work on the same CAN bus.

The actual channel and module values (measurement and status) are refreshed approximately every 10ms x number of channels.

The board temperature values are refreshed approximately every 5 up to 10 s.

3.3 Operation principle

3.3.1 Remote interface control

The communication between an application and the module is performed by the transmission of data items. A data item contains information to be submitted to and/or received from the module. It can represent a specific quantity or a union of single bits. The majority of the data items are standard for all Multi-Channel HV modules and are described in the interface manual in detail. Data items for optional functions are described in the interface options manual.

A general distinction can be made between data items to control individual HV channels and data items to control the HV modules with the sum of all contained channels.

The former group includes the following data items, which exist for every single HV channel:

- items to handle channel status, control and event's
- items to set the voltage or current, bounds, interlock maximum and minimum
- items to read the measured voltage and current
- items to read the nominal voltage and current

The following data items control the properties of the whole HV module. These items exist only once per module:

- items to handle module status, control and events
- voltage ramp speed (is the same for all HV channels)
- current ramp speed (is the same for all HV channels)
- restart time after recalling set values
- maximum set voltage
- maximum set current
- ADC samples per second
- digital filter setting
- power supply voltages
- temperature
- maximum voltage
- maximum current

3.3.2 Channel and Module

A high voltage channel is a single high voltage source and measurement circuit. The channel has different operation modes and provides different measurements and status flags.

A module is the combination of one or more high voltage channels in a common housing. Examples are EHS with up to 48 channels. Beside the combination of all channels, the module provides some more measurement and status information for the whole device.

Module commands set a module-wide function or return a module-wide status or measurement value. Channel commands, in contrast, operate on a specific channel. High voltage device operation modes

3.3.3 Terminology

Syntax	Declaration
V _{nom}	Voltage nominal, the maximum possible output voltage
I _{nom}	Current nominal, the maximum possible output current
V_{set}	Voltage Set, the user-controllable demanded output voltage
V_{meas}	Voltage Measure, the actual measured output voltage
V_{lim}	Voltage Limit. Can be a hardware or a software limit and serves two purposes: 1. It limits the upper value of V _{set} to the given limit value: V _{set} ≤ V _{lim} 2. It generates the Channel Status is Voltage Limit if V _{meas} exceeds the limit value (the exact threshold value is device dependent)
I _{set:}	Current Set, the user-controllable demanded output current
I _{meas}	Current Measure, the actual measured output current
I _{lim}	 Current Limit. Can be a hardware or a software limit and serves two purposes: It limits the upper value of I_{set} to the given limit value: I_{set} ≤ I_{lim} It generates the Channel Status is Current Limit if I_{meas} exceeds the limit value (the exact threshold value is device dependent)
V _{bounds}	Voltage bounds, a tolerance tube $V_{\text{set}} \pm V_{\text{bounds}}$ around V_{set} . If V_{meas} exceeds this tolerance in either direction, the Channel Status is Voltage Bounds is generated. (condition: no ramping)
I _{bounds}	Current bounds, a tolerance tube $I_{set} \pm I_{bounds}$ around I_{set} . If I_{meas} exceeds this tolerance in either direction, the Channel Status is Current Bounds is generated. (condition: no ramping)

Table 5: Terminology

3.3.4 Channel operation modes

Description											
The channel is off, it does not generate high voltage. If all status conditions are satisfied, the channel can be turned on.											
Γhe channel is actively generating high voltage.											
The channel ramps to the V _{set} if turned on or is turns off with the programmed ramp speed. EHS FLEX devices provide voltage and current ramp speed setting per channel in V/s resp. A/s. All other devices have a common voltage and current ramp speed for all channels in %/s.											
The channel is shut down without ramp. Afterwards, it stagiven.	ys in Emergency Off until Emergency Clear is										
The channel leaves the state Emergency Off and goes to s nothing happens.	state Off. If the channel is not in Emergency Off,										
	he mode Kill Enable provides a higher safety. This mode is module-wide and therefore affects all hannels. The channel will got to Trip and shut down without ramp when any of the following conditions ccur:										
$ \begin{array}{cccc} \bullet & V_{meas} > V_{lim} & & OR \\ \bullet & I_{meas} > I_{lim} & & OR \\ \bullet & I_{meas} > I_{set} & & OR \end{array} $	• $I_{meas} > I_{lim}$ OR • $V_{meas} < V_{set} - V_{bounds}$										
If of the limits above will happen:											
Switch the channel from operating mode voltage cont with current control.	crol into current control if there is a HV hardware										
 HV hardware without current control – a trip in the ch generation. Then the module automatically starts to r voltage. If the HV is held during the trip, e.g. by an ext- from the voltage at the output. The auto-recovery of t span of 10 minutes. If the channel trips a second time off. 	estore the HV via a voltage ramp to the set ernal capacity load, the recovery of the HV starts he voltage is performed only once in a time										
The channel operates as constant voltage source, that me	eans V _{meas} ≈ V _{set} and I _{meas} < I _{set}										
The channel operates as constant current source, that me	eas $V_{meas} < V_{set}$ and $I_{meas} \approx I_{set}$										
This is a special mode of Constant Current. If this mode is Channel Status is Current Trip is generated. Depending or Constant Current, or turn off with ramp or shut down with Trip also happens when Kill Enable is active and any of the	n the trip configuration, the channel may stay in hout ramp.										
External Inhibit is a hardware line to control the high volta Depending on the device, there might be one External Inh channels. Some devices always shut down the high voltag devices allow to configure this function.	nibit per channel or one External Inhibit for all										
External Inhibit individual per channel	EHS, EHS STACK, NHS and NHR										
External Inhibit is configurable	EHS, EHS STACK, NHS and NHR										
An input error occurs, if an invalid command or parameter exceeds the allowed range. Example: setting a V_{set} of 4000											
NHR and SHR devices provide switchable output polarities	s, positive and negative.										
NHR and SHR devices provide switchable output modes w e.g. 6kV/1mA and 2kV/3mA.	vith different voltage and current combinations,										
EHS Stack provide a special feature to avoid voltage reboudetectors.	und effects that might follow a discharge in GEM										
	The channel is off, it does not generate high voltage. If all be turned on. The channel is actively generating high voltage. The channel ramps to the V _{set} if turned on or is turns off we HS FLEX devices provide voltage and current ramp speed. All other devices have a common voltage and current ram. The channel is shut down without ramp. Afterwards, it stagiven. The channel leaves the state Emergency Off and goes to snothing happens. The mode Kill Enable provides a higher safety. This mode channels. The channel will got to Trip and shut down with occur: V _{meas} > V _{lim} OR										

Table 6: Channel operation modes

3.3.5 Status and Event generation

Channel as well as Module have status and event registers. Both registers contain similar condition bits. The difference between both register types is, that status bits are set and cleared by the device according to the current conditions. Event bits, however, are only set by the device and must be cleared explicitly by the user.

For example, the Status bit is Constant Current indicates that the channel *is now* in constant current mode. The Event bit Event Constant Current in contrast indicates, that the channel has been (or still is) in constant current mode since the last clearing of this bit.

It is thereby possible to clear all status flags at once or to just clear individual bits. In general it is not possible to clear an event bit if the corresponding status bit is still set. The status and event registers are described in detail in section Status and Event registers starts from page 48.

3.3.6 Additional current measuring range (Option)

Some modules are equipped with a second current measuring range to capture small current values. The range is automatically detected. In the second range the values will be converted with a higher resolution. The value is in the same floating point format as in the first range. The device control protocol allows to request which range is active.

INFORMATION

The second range cannot be activated if:

- function KillEnable is on.
- a voltage ramp up is running.
- the module operates in CC mode.

3.3.7 Control and Status items

3.3.7.1 Controls

Control items encapsulate a number of bits which allow to switch On or Off specific functions. There is a control item for the module (ModuleControl) and one for each channel (ChannelControl). Control bits that are used to switch a function permanently are named "set..." (e.g. "setON" to switch a channel On of Off). Bits that initiate the execution of a task just once are named "do..." (e.g. "doClear" to clear all events).

3.3.7.2 Status and events

Status items contain a register that encapsulates bits that indicate the current status of the module or channel. Status bits are named starting with "is...". The status always displays only present conditions, if a condition has changed corresponding status bits will be updated.

Unlike the status, event items record previous conditions (e.g. exceeded limits, trips etc.). If an event is registered the corresponding event bit is set permanently to "1" and will keep the information until explicitly reset. Event bits are named starting with "E...".

status Summary of actual condition of module, channel or group

event Event, characterizes a former or actual special condition of module, channel or group

3.3.7.3 Event status and event mask

To avoid the need for checking all event sources permanently for incoming events, the module provides a hierarchical chain for the combination of the events to a single status bit. The structure for the event processing allows a combination of events coming from the module status, the status of the channels and the group status. For each event status item a corresponding event mask item is provided. The event mask defines which event status bits contribute to the combined event status.

Event mask Filter to define which individual events contribute to the summarized event

Between event status items and the corresponding mask is a bit by bit correspondence. The bits in the mask are named starting with "ME...". If the mask bit is set, the occurring of the respective event will activate the combined event. In turn these sum events are collected in an event status register and connected with an event mask register at this higher level.

CAUTION!

If an event bit in the EventStatus is active and the corresponding bit in the EventMask is set, it is not possible to ramp up the voltage or to activate the HV generation if it has been switched off. To unblock this the EventStatus bits must be reset by writing "1" on the corresponding bit positions.

Individual events in the channel event status are starting point of the event combination logic.

First each event status bit for the channel is combined with the corresponding bit in the event mask using a logical AND. Then an event status bit for the channel is generated by combining all resulting bits with a logical OR. The full logical operation is given by

EventChannelStatus[n] = (Channel[n].EventVoltageLimit AND Channel[n].MaskEventVoltageLimit) OR

(Channel[n].EventCurrentLimit AND Channel[n].MaskEventCurrentLimit) OR

(Channel[n].EventCurrentTrip AND Channel[n].MaskEventCurrentTrip) OR

(Channel[n].EventExtInhibit AND Channel[n].MaskEventExtInhibit) OR

 $(Channel [n]. Event Voltage Bounds \ AND \ Channel [n]. Mask Event Voltage Bounds) \ OR$

(Channel[n].EventCurrentBounds AND Channel[n].MaskEventCurrentBounds) OR

(Channel[n].EventCoonstantVoltage AND Channel[n].MaskEventConstantVoltage) OR

(Channel[n].EventConstantCurrent AND Channel[n].MaskEventConstantCurrent) OR

(Channel[n].EventEmergency AND Channel[n].MaskEventEmergency) OR

 $(Channel [n]. Event End Of Ramp\ AND\ Channel [n]. Mask Event End Of Ramp)\ OR$

 $(Channel[n]. EventOnToOff\ AND\ Channel[n]. MaskEventOnToOff\)\ OR$

(Channel[n].EventInputError AND Channel[n].MaskEventInputError)

The result of the first step for all channels is stored in the register EventChannelStatus.

In the next step all bits of the EventChannelStatus are combined to a single status bit, using the corresponding mask (EventChannelMask). The logical operation is given by

EventChannelActive = (EventChannelStatus[0] AND EventChannelMask[0]) OR

(EventChannelStatus[1] AND EventChannelMask[1]) OR

•••

 $({\sf EventChannelStatus[n]}\ {\sf AND}\ {\sf EventChannelMask[n]})$

A second branch in the event processing logic treats events generated by the status of the module. The following scheme applies to these module events:

EventModuleActive = (EventTemperatureNotGood AND MaskEventTemperatureNotGood) OR

(EventSupplyNotGood AND MaskEventSupplyNotGood) OR

(EventSafetyLoopNotGood AND MaskEventSafetyLoopNotGood)

A third branch combines events generated by groups (monitor group, timeout group, see chapter 3)

Group events are stored in the status register EventGroupStatus. The mask EventGroupMask is used to generate the combined bit EventGroupActive with the following operation:

EventGroupActive = (EventGroupStatus[0] AND EventGroupMask[0]) OR

(EventGroupStatus[1] AND EventGroupMask[1]) OR

•••

(EventGroupStatus[32] AND EventGroupMask[32])

Finally the three branches are combined to the bit IsEventActive in the register ModuleStatus:

IsEventActive = EventChannelActive OR EventModuleActive OR EventGroupActive

3.3.8 Summarizing channel characteristics into groups

The module provides a highly flexible group functionality. A group is a combination of all or a selection of channels with the ability to control or monitor a specified quantity or characteristic of all included channels. There are two classes of groups "Fix Groups" and "Variable Groups". The former are predefined groups that allow to set single specification values in all channels. The latter are configurable groups that allow to customize the logical structure of the module to the logical structure of the application. They allow an arbitrary assignment of channels and provide a wide range of functionality, structured in four predefined group types. Up to 32 Variable Groups can be defined. The predefined group types are:

3.3.8.1 **Set Group**

sets a specified channel characteristic in all selected channels no event generation

3.3.8.2 Status Group

represents the status (condition) of a channel characteristic for all channels no event generation

3.3.8.3 Monitor Group

monitors the condition of a channel characteristic for selected channels event generation when the condition changes configurable response (e.g. switch off)

3.3.8.4 Timeout Group

monitors the current trip in selected channels to employ this group the signal KillEnable must be turned off Event generation only after expiry of a predefined time within which the trip condition must be active configurable response (e.g. switch off)

3.3.8.5 Responses on events (Soft-Kill features)

Event generating groups can be configured to perform one out of four predefined responses if the event has been generated:

- shut down of the whole module without ramp
 - o high voltage in all channels of the module is switched off
- switch off all channels that are members of the group without ramp
 - \circ high voltage in all channels of the group is switched off
- switch off all channels that are members of the group with ramp
 - o high voltage in all channels of the group is ramped down
- no response
 - o no change

3.4 Communication via Interface

All modules are controlled via a serial CAN bus interface according to CAN bus specification 2.0A. The actual control protocol is the "Enhanced Device Control Protocol" and is explained more precisely in the following sections.

Furthermore it is implemented a second command set, which corresponds to the deprecated standard protocol "Device Control Protocol". The description of the Device Control Protocol is carried out in the corresponding manual (see Appendix).

We don't recommend to use this data points for actual applications.

3.4.1 Enhanced Device Control Protocol EDCP

The communication between the controller and the module is working according to the Enhanced Device Control Protocol EDCP, which has been designed for instruments of Multi-Channel systems by iseg Spezialelektronik GmbH. This protocol is working according to the master slave principle. Therefore, the control of the HV device through a controller in the superior layer is the master in this system, while the module (as a Front-end device with intelligence) is the slave.

The data exchange between the controller and the HV device is working with help of data frames. These data frames are made out of one direction bit DATA_DIR, one 16bit DATA_ID and further data bytes. The direction bit DATA_DIR defines whether the data frame is a write or read-write access. Write access means that the host writes data into the module, read-write access means that the host wants to read data from the module (this is the read access), and the module answers by a write access. The DATA_ID is characterized through the first bit of the data frame with DATA_ID.b15=0 of EDCP frames (DATA_ID.bit7=1 of standard DCP frames). In order to code the type of an access the bit14=1 for a **single channel** access (symbol **S**), b13=1 for a **group access** (symbol **G**) and b12=1 for a **module access** (symbol **M**).

The next tables will give an overview of the parts of the EDCP:

Access	DATA DIR	DATA_	ID bits						CHN bits	
		Bit15	Bit14	Bit13	Bit12	Bi11	 Bit1	Bit0	Bit7	Bit0
Enhanced DATA_ID	1/0	0	S	G	М					
Single channel CHN Write access	0	0	1	0	0	S11	 S1	S0	C7	C0
Single channel CHN Read-write access	1/0	0	1	0	0	S11	 S1	S0	C7	CO
Module Write access	0	0	0	0	1	M11	 M1	M0		
Module Read-write access	1/0	0	0	0	1	M11	 M1	M0		

Notes:

S – single channel access

G – group access
M – module access

S11 ... S0. – single channel access code

M11 ... M0 - module access code

C7 ... C0 – Channel multiplex byte CHN

If the type of the data frame is a single channel access it will code the corresponding channel information with help of the next multiplex of channel byte (CHN).

If the type of the data frame is a module access then a DATA_ID is necessary only.

If the type of the data frame is a combination of a single channel and group instruction then it will code the corresponding channel members with help of the next 16bit word (symbol MBR) followed by an OFFSET byte to have a channel start index in steps of 16 (reserved at the moment).

Access	DATA DIR	DATA_	DATA_ID bits CHN / MBR bits										
		Bit15	Bit14	Bit13	Bit12	Bit11		Bit1	Bit0	Nmax	Nmin		
Enhanced DATA_ID	1/0	0	S	G	М								
Single channel CHN of members MBR	1	0	1	1	0	S11		S1	S0	M15 to M0 (MBR)		0, 16 ,32 (reserved)	
Replay	0									C47 to C	0 (CHN)		

Notes:

M15 ... M0 – channel members, every HV channel between 0 and 15 can be added to the request by the corresponding member bit (HV channel 0 will be addressed by M0, HV channel 1 will be addressed by M1 and so on)

INFORMATION

MBR=0 will address all HV channels of the module, that's is important for modules with more than 16 HV channels.

When a HV device has received such a request message it will answer with multiple CAN frames for all channels which are addressed as members (MBR).

Access	DATA DIR	DATA_I	D bits				
		Bit15	Bit14	Bit13	Bit12		Bit0
Group of members MBR Write access	0	0	S	G	М	Х	Х
Group of members MBR Read-write access	1 0	0	0	1	0	G11	G0

The data format of data frame which are coded a group access without a combination of the **S** bit has to be take from the respective description in this manual.

These data frames correspond to a transfer into layer 3 (Network Layer) and layer 4 (Transport Layer) of the OSI model of ISO. The transmission medium is the CAN Bus according to specification 2.0A, related to level1 (Physical Layer) and level 2 (Data Link Layer).

3.4.1.1 Data formats

The data format on the network is big endian, i.e. on Intel computers, the value is stored byte-wise reverse. Please use some of the online analysis tools for IEEE-754 floating-point conversion in to the binary format.

UI1 unsigned character
SI1 signed character

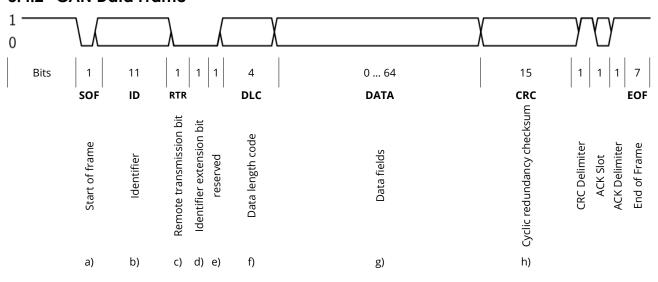
UI2 unsigned short integer (16 bit)

UI4 unsigned integer (32 bit)

R4 float according to IEEE-754 single precision format

Example Vset:

Floating point value = 1000 V:


Binary value in correspondence to IEEE-754 = 0x44 0x7a 0x00 0x00

Data bytes in the big-endian data range of CAN: 0x44 0x7a 0x00 0x00

Data-Bytes in computers using a little endian memory: 0x00 0x00 0x7a 0x44

3.4.2 CAN Data Frame

- a) Start of frame
- b) Identifier

	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Front-End Address	0	Р	Addr5	Addr4	Addr4	Addr2	Addr1	Addr0	0	0	DATA_DIR
NMT (broadcast)	0	0	0	0	0	0	0	0	1	0	0

Addr5 to Addr0 coding the Front-Address by backplane signals. Please see Appendix E to refer corresponding hardware manuals for more details.

- c) Remote transmission bit
- d) Identifier extension bit

11-bit identifiers (EDCP identifiers)	0 (dominant)
29 bit identifiers ((CC24 routing messages)	1 (recessive)

- e) Reserved
- f) 4 bit Data length code (maximum length is 8)
- g) Data field

Single channel access: n = 3 to 7 bytes

DATA ID (n1, n2)	CHANNEL (n3)				
DATA ID (n1, n2)	CHANNEL (n3)	DATA (n4)	DATA (n5)	DATA (n6)	DATA (7)

Multiple channel access: n = 5 to 7 bytes

DATA ID (n1, n2)	Member (n3, n4)		offset (n5)		
DATA ID (n1, n2)	CHANNEL (n3)	DATA (n4)	DATA (n5)	DATA (n6)	DATA (7)

Recommended is member value 0 to requests the DATA_ID for all channels of the module. Also a request for the first 16 channels can be combined in each case via the member bits (channel 0 by 0x0001, channel 1 by 0x0002 and all 16 channels by 0xfff).

offest byte is reserved

Group accesses

DATA ID (n1, n2)	Group number (n3)	Offset (n4)		
DATA ID (n1, n2)	Group number (n3)	Offset (n4)	Members (n5, n6)	Configuration (n6, n7)

Module access: n = 2 to 6 bytes

DATA ID (n1, n2)				
DATA ID (n1, n2)	DATA (n3)	DATA (n4)	DATA (n5)	DATA (n6)

h) 16 bit CRC field = CRC + CRC DelimiterCyclic

Please refer "CAN data link layers in some detail" (Appendix E – Literature references).

Description of Data fields point g)

DATA ID

Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0																
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

The Front-end device must do:

- Processing of NMT services via broadcast messages inside of the CAN segment
- Processing of the single accesses with direct channel values.
- Processing of group information of the module.
- Self-registration in the higher level through sending the module address.
- Building of status information.
- Send an active error message with higher priority if one of the bits sum status, supply voltages or safety loop in the group access "General status module" not has been set (the module must be configured as a CAN-node with an Active-CAN message function).

3.4.3 Summary of CAN data frame accesses via the NMT service identifier

Access	DATA_ DIR	ВҮТЕ	NN Bit		ATA	_ID					read / write / active	DATA-Bytes
	ID0	hex	7	6	5	4	3	2	1	0		
No NMT DATA_ID	х		0	х	х	х	х	х	х	x		
NMT service CAN segment	0		1	1	N3	N2	N1	N0	R1	R0		
NMT Address (MICC only)	0/1	0x30	0	0	1	1	0	0	0	0	w	0/2/3
NMT Start	0		1	1	0	0	0	1	х	х	w	1
NMT Stop	0		1	1	0	0	1	0	х	х	w	1
NMT Reset CAN	0		1	1	0	0	1	1	х	х	w	1
NMT Reset hardware	0		1	1	0	1	0	0	х	х	w	1
NMT set of Bit rate	0		1	1	0	1	0	1	х	х	w	3
NMT set of temperature	0		1	1	0	1	1	0	х	х	w	3
NMT mode set	0		1	1	1	0	0	0	х	х	w	2/6
NMT set standard DCP or enhanced DCP	0		1	1	1	0	0	1	x	х	w	2
NMT channel group set	0		1	1	1	0	1	0	х	х	w	8/6
NMT module set	0		1	1	1	0	1	1	х	х	w	8/6
Notes:		-	'			-			-			

N3 ... N0: NMT access R1 ... R0: reserved

NMT Address (MICC only)

Access	CAN ID (NMT)	RTR	EXT_INSTR	DATA_DIR	DATA_ID	DATA_1	DATA_0
NMT-RTR master	0x004	1	0	0	-	-	-
NMT-RTR board reply	0x003	0	0	0	0xC0	address	-
NMT Addess master write	0x004	0	0	0	0xC0	old address	new address

NMT Start The state of all Front-end devices is going to OPERATIONAL (see 4.2Appendix B - Diagram of operating modes)

NMT Stop The state of all Front-end devices is going to PREPARED

This is necessary before storing any information permanently in EEPROM or execute one of the

following NMT services.

NMT Reset CAN re - initialise all connected iseg Multi-Channel CAN devices.

NMT Reset hardware execute a hardware reset of all connected CAN devices.

NMT set of Bit rate set a new bit rate for all connected iseg Multi-Channel CAN devices (DATA_1 / DATA_0 see group

access Bit rate, chapter 3.5.2.25Bit rate (module write- / read-write access)

NMT set of temperature An offset for the calculation of the temperature will be calculated in all modules which receive this

message. DATA_1 to DATA_0 contains the measured temperature in tenth parts of °C as UI2 type.

DATA_1	DATA_0
MSB	LSB

NMT mode set

Mode	Data_0	Description
NORMAL_MODE	000	Operating Mode "Operational" without any condition
FACTORY MODES	001 - 005	will used in production of the modules only!
LIVE_INSERTION_MODE	006	Mode to avoid events during a live insertion

NMT set standard DCP or enhanced DCP: DATA_0=0 standard DCP DCP

DATA_0=1 enhanced DCP EDCP

NMT broadcast messages

NMT channel group set frame:

Access	DATA_DIR	NMT DATA_ID	GROUP	EDCP DATA_ID EDCP Multiple Single Channels Access	DATAn DATAn-1	DATAn-2 DATAn-3
NMT group voltage set	0	0xe8	Group	0x6100	Voltage [R4]	
NMT group current set	0	0xe8	Group	0x6101	Current [R4]	
NMT group control set	0	0xe8	Group	0x6001	Control [UI2]	
NMT group event mask set	0	0xe8	Group	0x6003	Event mask [UI2]	

Group 0..255 (group = 0 after power on of the module)

NMT module set frame:

Access	DATA_DIR	NMT DATA_ID	GROUP	EDCP DATA_ID EDCP Module Access	DATAn
NMT voltage ramp speed set	0	0xec	reserved	0x1100	Voltage ramp speed [R4]
NMT current ramp speed set	0	0xec	reserved	0x1101	Current ramp speed [R4]
NMT control set	0	0xec	reserved	0x1001	Control [UI2]
NMT event mask	0	0xec	reserved	0x1003	Event mask [UI2]
NMT event channel mask	0	0xec	reserved	0x1005	Event mask [UI2]

With one of the NMT channel group set or the NMT module set frames a message is sent to the corresponding data point of the table above in kind of a broadcast information for all channels, which have the same group number GROUP. The detailed description of the frames can be found by a click on the arrows of the tables. The EDCP Single Channel Access <u>GroupNumber</u> (described on 3.5.1.43 Group number (single/ multiple single read-write access)) handles the distribution of a group number for each channel.

Example: Switch ON all channels of the whole system (group number after reset of all channels is zero)

ID	DLC	NMT DATA_ID	GROUP	EDCP DATA_ID Multiple Single Channel Access	Channel control
0x004	0x6	0xe6	0x00	0x6001	0x0008

3.4.4 Summary of CAN data frame accesses via the Front-end-address identifier

Multi-channel High Voltage CAN modules are made out of one or two PCBs (in order to double the number of HV channels) and one digital CAN Interface per PCB.

Each module board has to be controlled separately via its own CAN nodes identifier (see 3.4.2 CAN Data Frame to control the HV modules above).

3.4.4.1 List to access of the EDCP made for HV boards up to 255 channels EDCP Single Channel Accesses

Access	DATA_DIR	WORD	DAT Bit	ΓΑ_ΙΓ)							read / write / active	DATA Bytes	Page
	ID0	hex	15	14	13	12								
DATA_ID			0	S	G	М	x (2	x (2	x (2	x (2	x (2			
Single channel access	1/0	0x4xxx	0	1	0	0		S1	1 S	O (1				
ChannelStatus	1	0x4000	0	1	0	0			0x000)		r	3/5	48
ChannelStatus32	1	0x4080	0	1	0	0			0x080)		r	3/7	48
ChannelControl	1/0	0x4001	0	1	0	0			0x00´	I		r/w	3/5	51
ChannelControl32	1/0	0x4081	0	1	0	0			0x08′	1		r/w	3/7	51
ChannelEventStatus	1/0	0x4002	0	1	0	0			0x002	2		r/w	3/5	52
ChannelEventStatus32	1/0	0x4082	0	1	0	0			0x082	2		r/w	3/7	53
ChannelEventMask	1/0	0x4003	0	1	0	0			0x003	3		r/w	3/5	55
ChannelEventMask	1/0	0x4083	0	1	0	0				r/w	3/7	55		
DelayedTripTime	1/0	0x4005	0	1	0	0				r/w	3/5	57		
DelayedTripAction	1/0	0x4006	0	1	0	0	0x006			r/w	3/4	57		
ExternalInhibitAction	1/0	0x4007	0	1	0	0	0x007			r/w	3/4	58		
VoltageRampPriority	1/0	0x4010	0	1	0	0	0x010			r/w	3/5	58		
VoltageSet	1/0	0x4100	0	1	0	0			0x100)		r/w	3/7	59
CurrentSet / CurrentTrip	1/0	0x4101	0	1	0	0			0x101	l		r/w	3/7	59
VoltageMeasure	1	0x4102	0	1	0	0			0x102	2		r	3/7	60
CurrentMeasure	1	0x4103	0	1	0	0			0x103	3		r	3/7	60
VoltageBounds	1/0	0x4104	0	1	0	0			0x104	1		r/w	3/7	61
CurrentBounds	1/0	0x4105	0	1	0	0			0x10	5		r/w	3/7	61
VoltageNominal	1	0x4106	0	1	0	0			0x106	5		r	3/7	62
CurrentNominal	1	0x4107	0	1	0	0			0x107	7		r	3/7	62
PowerNominal	1	0x4108	0	1	1	0	0x108		r	3/7	62			
CurrentMeasure Range	1	0x4109	0	1	0	0	0x109			r	3/8	63		
VoltageBottom	1/0	0x410A	0	1	0	0	0x10A			r/w	3/7	63		
VctCoefficient	1/0	0x4120	0	1	0	0	0x120			r/w	3/7	64		
TemperatureExternal	1	0x4121	0	1	0	0	0x121			r/w	3/7	64		
ResistorExternal	1/0	0x4122	0	1	0	0			0x122	2		r/w	3/7	65
VoltageRampSpeedUp	1/0	0x4123	0	1	0	0			0x123	3		r/w	3/7	65
VoltageRampSpeedDown	1/0	0x4124	0	1	0	0			0x124	1		r/w	3/7	65

Access	DATA_DIR	WORD	DAT Bit	ΓΑ_ΙΓ)			read / write / active	DATA Bytes	Page
CurrentRampSpeedUp	1/0	0x4125	0	1	0	0	0x125	r/w	3/7	66
CurrentRampSpeedDown	1/0	0x4126	0	1	0	0	0x126	r/w	3/7	66
VoltageRampSpeedMin	1/0	0x4127	0	1	0	0	0x127	r/w	3/7	66
VoltageRampSpeedMax	1/0	0x4128	0	1	0	0	0x128	r/w	3/7	67
CurrentRampSpeedMin	1/0	0x4129	0	1	0	0	0x129	r/w	3/7	67
CurrentRampSpeedMax	1/0	0x4130	0	1	0	0	0x130	r/w	3/7	67
OutputMode	1/0	0x4140	0	1	0	0	0x140	r/w	3/4	69
OutputPolarity	1/0	0x4141	0	1	0	0	0x141	r/w	3/4	69
VoltageMode	1	0x4142	0	1	0	0	0x142	r	3/7	69
CurrentMode	1	0x4143	0	1	0	0	0x143	r	3/7	70
VoltageModeList	1	0x4150	0	1	0	0	0x150	r	3/7	70
CurrentModeList	1	0x4160	0	1	0	0	0x160	r	3/7	70
GroupNumber	1/0	0x4200	0	1	0	0	0x200	r/w	3/4	71

Notes:

S DATA_ID type bit for a EDCP-frame of an access to a single channel G DATA_ID type bit for a EDCP-frame of an access to a group of channels M 1) DATA_ID type bit for a EDCP-frame of an access to the whole module

single channel access bits, (n=0 ... 11) Sn

2) 0 or 1 Х

Table 7: List to access of the EDCP

3.4.4.2 EDCP Multiple Single Channels Access

Access	DATA_DIR	WORD	DAT Bit	ΓΑ_ΙΙ)							read / write / active	DATA Bytes	Page
	ID0	hex	15	14	13	12				1	0			
DATA_ID			0	s	G	М	X (2	X (2	X (2	X (2	X (2			
Single channel access	1	0х6ххх	0	1	1	0		S11 S0 ⁽¹						
ChannelStatus	1	0x6000	0	1	1	0			0x0	00		r	5/5	48
ChannelStatus32	1	0x6080	0	1	1	0			0x0	80		r	5/7	48
ChannelControl	1	0x6001	0	1	0	0			0x0	01		r	5/5	51
ChannelControl32	1	0x6081	0	1	0	0			0x0	81		r	5/7	51
ChannelEventStatus	1	0x6002	0	1	1	0			0x0	02		r	5/5	52
ChannelEventStatus32	1	0x6082	0	1	1	0			0x0	82		r	5/7	53
ChannelEventMask	1	0x6003	0	1	1	0			0x0	03		r	5/5	55
ChannelEventMask32	1	0x6083	0	1	1	0			0x0	83		r	5/7	55
DelayedTripTime	1	0x6005	0	1	1	0			0x0	05		r	5/5	57
DelayedTripAction	1	0x6006	0	1	1	0			0x0	06		r	5/4	57
ExternalInhibitAction	1	0x6007	0	1	1	0			0x0	07		r	5/4	58
VoltageRampPriority	1	0x6010	0	1	1	0			0x0	10		r	5/5	58
VoltageSet	1	0x6100	0	1	1	0			0x1	00		r	5/7	59
CurrentSet / CurrentTrip	1	0x6101	0	1	1	0			0x1	01		r	5/7	59
VoltageMeasure	1	0x6102	0	1	1	0			0x1	02		r	5/7	60
CurrentMeasure	1	0x6103	0	1	1	0			0x1	03		r	5/7	60
VoltageBounds	1	0x6104	0	1	1	0			0x1	04		r	5/7	61
CurrentBounds	1	0x6105	0	1	1	0			0x1	05		r	5/7	61
VoltageNominal	1	0x6106	0	1	1	0			0x1	06		r	5/7	62
CurrentNominal	1	0x6107	0	1	1	0			0x1	07		r	5/7	62
PowerNominal	1	0x6108	0	1	1	0			0x1	08		r	5/7	62
CurrentMeasure Range	1	0x6109	0	1	1	0			0x1	09		r	5/8	63
VoltageBottom	1	0x610A	0	1	1	0			0x10	DΑ		r	5/7	63
VctCoefficient	1	0x6120	0	1	1	0			0X1	20		r	5/7	64
TemperatureExternal	1	0x6121	0	1	1	0			0X1	21		r	5/7	64
ResistorExternal	1	0x6122	0	1	1	0			0X1	22		r	5/7	65
VoltageRampSpeedUp	1	0x6123	0	1	0	0			0x1	23		r	5/7	65
VoltageRampSpeedDown	1	0x6124	0	1	0	0			0x1	24		r	3/7	65
CurrentRampSpeedUp	1	0x6125	0	1	0	0			0x1	25		r	3/7	66
CurrentRampSpeedDown	1	0x6126	0	1	0	0			0x1	26		r	3/7	66
VoltageRampSpeedMin	1	0x6127	0	1	0	0			0x1	27		r	3/7	66
VoltageRampSpeedMax	1	0x6128	0	1	0	0			0x1	28		r	3/7	67
CurrentRampSpeedMin	1	0x6129	0	1	0	0			0x1	29		r	3/7	67
CurrentRampSpeedMax	1	0x6130	0	1	0	0			0x1:	30		r	3/7	67

Access	DATA_DIR	WORD	DA ^T Bit	ΓΑ_ΙΙ)			read / write / active	DATA Bytes	Page
<u>PowerSet</u>	1	0x6134	0	1	0	0	0x134	r/w	3/7	68
<u>PowerMeasure</u>	1	0x6135	0	1	0	0	0x135	r	3/7	68
OutputMode	1	0x6140	0	1	1	0	0X140	r	3/4	69
OutputPolarity	1	0x6141	0	1	1	0	0X141	r	5/4	69
VoltageMode	1	0x6142	0	1	1	0	0X142	r	5/7	69
CurrentMode	1	0x6143	0	1	1	0	0X143	r	5/7	70
VoltageModeList	1	0x6150	0	1	1	0	0X150	r	5/7	70
CurrentModeList	1	0x6160	0	1	1	0	0X150	r	5/7	70
ChannelGroup	1	0x6200	0	1	1	0	0X200	r	6	71
Notes:		•	•					•	•	

DATA_ID type bit for a EDCP-frame of an access to single channel DATA_ID type bit for a EDCP-frame of an access to a group of channels DATA_ID type bit for a EDCP-frame of an access to the whole module Sn single channel access bits, (n=0 ... 11) S G M 1)

2)

0 or 1

Table 8: EDCP Multiple Single Channels Access

3.4.4.3 Module Access

Access	DATA_ DIR	WORD	DAT Bit	A_ID								read / write / active	DATA- Bytes	Page
	ID0	hex	15	14	13	12				1	0			
DATA_ID			0	S	G	М	X (2	X (2	X (2	x (2	X (2			
Module access	1/0	0x1xxx	0	0	0	1		M1	1 N	IO ⁽¹				
ModuleStatus	1	01000	0	0	0	1		(0x000			r	2/4	72
ModuleStatus32	1	01080	0	0	0	1			0x080			r	2/6	72
ModuleControl		0x1001	0	0	0	1			0x001			r/w	2/4	75
ModuleControl32		0x1081	0	0	0	1			0x081			r/w	2/6	75
ModuleEventStatus	1/0	0x1002	0	0	0	1			0x002			r/w	2/4	77
ModuleEventStatus32	1/0	0x1082	0	0	0	1		(0x082			r/w	2/6	77
ModuleEventMask	1/0	0x1003	0	0	0	1			0x003			r/w	2/4	78
ModuleEventMask32	1/0	0x1083	0	0	0	1			0x083			r/w	2/6	79
ModuleEventChannelStatus	1/0	0x1004	0	0	0	1			0x004			r/w	2/4	80
ModuleEventChannelStatus32	1/0	0x1084	0	0	0	1			0x084			r/w	2/6	80
ModuleEventChannelMask	1/0	0x1005	0	0	0	1			0x005			r/w	2/4	81
ModuleEventChannelMask32	1/0	0x1085	0	0	0	1			0x085			r/w	2/6	81
ModuleEventGroupStatus	1/0	0x1006	0	0	0	1			0x006			r/w	2/4	82
ModuleEventGroupMask	1/0	0x1007	0	0	0	1			0x007			r/w	4/2	83
VoltageRampSpeed	1/0	0x1100	0	0	0	1			0x100			r/w	2/6	84
CurrentRampSpeed	1/0	0x1101	0	0	0	1		(0x101			r/w	2/6	84
VoltageMax	1	0x1102	0	0	0	1		(0x102			r	2/6	85
CurrentMax	1	0x1103	0	0	0	1		(0x103			r	2/6	86
Supply24	1	0x1104	0	0	0	1		(0x104	-		r	2/6	86
Supply5	1	0x1105	0	0	0	1		(0x105			r	2/6	87
BoardTemperature	1	0x1106	0	0	0	1			0x106			r	2/6	87
ThresholdArmErrorDetection	1/0	0x1107	0	0	0	1			0x107			r/w	2/6	87
SerialNumber	1	0x1200	0	0	0	1			0x200	ı		r	2/6	87
FirmwareRelease	1	0x1201	0	0	0	1			0x201			r	2/6	88
BitRate	0/1	0x1202	0	0	0	1			0x202			r	4/2	88
NameOfFirmware	1	0x1203	0	0	0	1			0x203			r	5/6	89
ADC SamplesPerSecond	1/0	0x1204	0	0	0	1			0x204			r/w	4/2	90
DigitalFilter	1/0	0x1205	0	0	0	1			0x205			r/w	4/2	90

Access	DATA_ DIR	WORD	DAT Bit	A_ID				read / write / active	DATA- Bytes	Page
ChannelNumber	1	0x1208	0	0	0	1	0x208	r	6	90
ArticleDescription	1	0x1209	0	0	0	1	0x209	r	8	90
ModuleOption	1	0x1280	0	0	0	1	0x280	r	6	91
ModuleOptionSpec	1	0x1290	0	0	0	1	0x290	r	7	93
ModuleCommMode	0	0x12A0	0	0	0	1	0x2A0	w	4	94
FactorySettings	1/0	0x1401	0	0	0	1	0x401	r/w	4/8	-

Notes:

S DATA_ID type bit for a EDCP-frame of an access to single channel G DATA_ID type bit for a EDCP-frame of an access to a group of channels M 1) DATA_ID type bit for a EDCP-frame of an access to the whole module

module access bits, (n=0 ... 11)

2) 0 or 1

Table 9: Module Access

3.4.4.4 EDCP Group Accesses

Access	DATA_ DIR	WORD	DA ^r Bit	ΓΑ_ΙΙ)							read / write	DATA	Page
	DIK		DIL									/	- Bytes	
												active		
	ID0	hex	15	14	13	12				1	0			
DATA_ID			0	S	G	М	X (2	X (2	X (2	X (2	X (2			
Groups	1/0	0x2000	0	0	1	0						r/w	8/4	95
SetGroup StatusGroup MonitorGroup TripGroup														96 98 100 102
Temperatures	1	0x2001	0	0	1	0			0x001	l		r	7	104
SupplyMeasurements	1	0x2002	0	0	1	0		(0x002	2		r	7	104
SupplyNominals	1	0x2003	0	0	1	0			0x003	3				104
GroupVoltageLimits	1	0x2005	0	0	1	0			0x005	5		r	7	104
GroupCurrentLimits	1	0x2006	0	0	1	0			0x006	5		r	7	104
VoltageSetAllChannels	0	0x2100	0	0	1	0		(0x100)		w	6	105
Current-Trip/Set-AllChannels	0	0x2101	0	0	1	0			0x101			w	6	105
SetOnOffAllChannels	0	0x2200	0	0	1	0			0x200)		w	6	106
SetEmergencyAllChannels	0	0x2201	0	0	1	0			0x201			w	6	107
EventStatusVoltageLimitAllChannels	1/0	0x2202	0	0	1	0		(0x202	2		r/w	6	108
EventStatusCurrentLimitAllChannels	1/0	0x2203	0	0	1	0		(0x203	3		r/w	6	109
EventStatusCurrentTrip-AllChannels	1/0	0x2204	0	0	1	0		(0x204	1		r/w	6	110
EventStatusExternalInhibitAllChannels	1/0	0x2205	0	0	1	0			0x205	5		r/w	6	108
SetOnOffChannelsExtender	1/0	0x2280	0	0	1	0			0x280)		r/w	6	112
SetEmergencyChannels-Extender	1/0	0x2290	0	0	1	0			0x290)		r/w	6	113

DATA_ID type bit for a EDCP-frame of an access to a group of channels M 1) DATA_ID type bit for a EDCP-frame of an access to the whole module

group access bits, (n=0 ... 11) Gn

Table 10: EDCP Group Accesses

3.4.4.5 Important DCP Module Access

Access	EXT_ INSTR	DATA_ DIR	Byte	DATA_ID Bit								read / write / active	DATA- Bytes	Page
	ID0	ID1		7	6	5	4	3	2	1	0			
Group access MODULE	0	1/0		1	1	М3	M2	M1	M0	R1	R0			
GeneralStatus	0	1/0	0xc0	1	1	0	0	0	0	0	0	a	3	114
LogOnOff Front-end at the superior layer	0	1/0	0xD8	1	1	0	1	1	0	0	0	a/w	3	116
Notes:														

3.5 Description of data information per DATA_ID in EDCP

3.5.1 EDCP Single Access

The single access describes the control of the channel properties. The range of the single access contains the accesses to the analog digital data items, to the status and the control words of the channels.

3.5.1.1 Channel status (single/multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CANNEL	DATA_1	DATA_0
master single read-	1	0x4000		Mx		
master single MBR read-	1	0x6000		Member		Offset
HV board write access	0	0x4000/0x6000		Mx	ChannelStatus	
Notes: Mx Member Offset ChannelStatus	Channel Members Channel men DATA_0 to DA	nber offset	1	255 16 6, 32 too access up to 2	55 channels	

3.5.1.2 Channel status 32 (single/multiple single read-write access)

Access	DATA_DIR	DATA_ID		CHANNEL	DATA_3	DATA_2	DATA_1	DATA_0
master single read-	1	0x4080	0x4080					
master single MBR read-	1	0x6080	0x6080 I			Offset		
HV board write access	0	0x4080/0x608	0x4080/0x6080		ChannelSta	tus32		
Notes: Mx Member Offset	Channel Members Channel men	nber offset	0 1 0, 1		cess up to 25	55 channels		
ChannelStatus32	DATA_0 to DA	ATA_3	UI4					

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
isConstant Power	isVoltage BoundLower	isVoltage BoundUpper	isVoltage RampDown	isVoltage RampUp	isCurrent RampDown	isCurrent RampUp	isCurrent Ramping
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
isVoltageLimit Exceeded	IsCurrentLimit Exceeded	isTrip Exceeded	isExternal Inhibit	isVoltage Bounds Exceeded	isCurrent BoundsExcee ded	isArcError	isLowCurrentR ange
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
isConstant Voltage	isConstant Current	isEmergency	isRamp	isOn	inputError	isArc	Reserved

The ChannelStatus register describes the actual status. Depending on the status of the module the bits will be set or reset.

The bit InputError will be set if the given parameter is not plausible or it exceeds the module parameters (e.g. if the command Vset=4000V is given to a module with NominalVoltage=3000V). The bit InputError is not be set if the given values are temporarily not possible (e.g. Vset=2800 at a module with NominalVoltage=3000V, but HardwareLimitVoltage=2500V). A certain signature which kind of input error it is does not exists.

Bit	Description
isVoltageLimitExceeded	voltage limit set by Vmax is exceeded
	isVoltageLimitExceeded=0 channel is ok isVoltageLimitExceeded=1 the hardware voltage limit is exceeded
isCurrentLimitExceeded	current limit set by Imax is exceeded
	isCurrentLimitExceeded=0 channel is ok isCurrentLimitExceeded=1 the hardware current limit is exceeded (to detect a hardware voltage or current limit error flag the firmware has to evaluate the channel voltage and current at first)
isTripExceeded	Trip is set when Voltage or Current limit or Iset has been exceeded (when KillEnable=1)
	isTripExceeded=0 channel is ok isTripExceeded=1 voltage output is shut off to 0V without ramp because the channel has been tripped.
isExternalInhibit	External Inhibit
	isExternalInhibit=0 channel is ok isExternalInhibit=1 External Inhibit was scanned
isVoltageBoundsExceeded	Voltage out of bounds
	isVoltageBoundsExceeded=0 channel is ok isVoltageBoundsExceeded=1 V _{meas} -V _{set} > V _{bounds}
isCurrentBoundsExceeded	Current out of bounds
	isCurrentBoundsExceeded=0 channel is ok isCurrentBoundsExceeded=1 $ I_{meas} - I_{set} > I_{bounds}$ (to detect a voltage or current out of bound flag the firmware has to ramp the channel voltage V_{set} at first)

Bit	Description
isArcError	maximum number of allowed arcs is exceeded, high voltage has been turned off
	isArcError=0 no arc error isArcError=1 maximum number of allowed arcs is exceeded
isLowCurrentRange	Low or small current range of the current measurement
	isLowCurrentRange=0 high or standard current range isLowCurrentRange=1 low current range of the current measurement
isConstantVoltage	Voltage control active (evaluation is guaranteed when no ramp is running)
	isConstantVoltage=1 channel is in state of voltage control isConstantVoltage=0 channel is in state of current control
isContstantCurrent	Current control active (evaluation is guaranteed when no ramp is running)
isEmergencyOff	Emergency off without ramp
	IsEmergencyOff=1 channel is in state of emergency off, VO has been shut off to 0V without ramp
isOn	On
	isOn=0 channel is off isOn=1 channel voltage follows the Vset value
isRamping	Ramp is running
	isRamping=0 no voltage is in change isRamping=1 voltage is in change with the stored ramp speed value
inputError	Input error
	inputError=0 no input-error inputError=1 incorrect message to control the channel
isArc or IsRegulationError	at least one electrical arc is active or faster error detection of the channel hardware is not in regulation (updated by firmware every 5ms)
	isArc=0 no arc active / normal error evaluation isArc=1 at least one electrical arc is active / fast detection of a regulation error (OPTION)
isPositive	reserved

Table 11

3.5.1.3 Channel control: (single write- and single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_1	DATA_0		
master write access	0	0x4001		Mx				
master read-	1	0x4001		Mx	ChannelControl			
master single MBR read-	1	0x6001		Member		Offset		
HV board write access	0	0x4001/	0x6001	Mx	ChannelControl			
Notes:								
Mx	Channel		0 255					
Member	Members		1 16					
Offset	Channel member	offset	0, 16, 32	32 to access up to 255 channels				

3.5.1.4 Channel control32: (single write- and single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID		CHANNEL	DATA_3	DATA_2	DATA_1	DATA_0
master single read-	1	0x4081		Mx				
master single MBR read-	1	0x6081		Member		Offset		
HV board write access	0	0x4081/0x608	1	Mx	ChannelCo	ntrol32		
Notes: Mx Member Offset ChannelControl32	Channel Members Channel men DATA_0 to DA	nber offset	1	255 16 6, 32 too ac	cess up to 2!	55 channels		

ChannelControl DATA_0 to DATA_3 UI4

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved							
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Reserved							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Reserved							

The signals SetOn and SetEmergencyOff control are basic functions of the channel. The signal SetOn is switching ON the HV of the channel and is a precondition for giving voltage to the output. As far as a VoltageSet has been set and no event has occurred and is not registered yet (in minimum, bit 5 and bit 10 to 15 of the register Channel Event Status must be 0), a start of a HV ramp will be synchronized (a ramp is a software controlled, time proportionally increase / decrease of the output voltage). A SetEmergencyOff switch the channel in state isEmergencyOff and a new SetOn is only possible after SetEmergencyOff is reset to zero.

Bit	Name	Description
setEMCY	SetEmergencyOff	Set "Emergency Off"
		SetEMCY=0 channel emergency cut-off works setEMCY=1 cut-off VO shut off to 0V without ramp
setON	SetOn	Set On
		setOn=0 switch the channel to OFF setOn=1 switch the channel to ON
res	Reserved	Reserved

3.5.1.5 Channel event status (single write- and single/ multiple single read-write access)

Access	DATA_DIR	DATA_II)	CHN	DATA_1	DATA_0
master write access	0	0x4002		Mx		
master read-	1	0x4002		Mx	ChannelEventStatu	S
master single MBR read-	1	0x6002		Member		Offset
HV board write access	0	0x4002/	0x6002	Mx	ChannelEventStatu	S
Notes:						
Mx	Channel		0 255			
Member	Members		1 16			
Offset	Channel member	offset	0, 16, 32 .	to access up to 25	5 channels	

3.5.1.6 Channel event status 32 (single write- and single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID		CHANNEL	DATA_3	DATA_2	DATA_1	DATA_0
master single read-	1	0x4082		Mx				
master single MBR read-	1	0x6082		Member		Offset		
HV board write access	0	0x4082/0x608	32	Mx	ChannelEv	entStatus32		
Notes: Mx Member Offset ChannelEventStatus32	Channel Members Channel men DATA_0 to DA		1	6, 32 too ac	cess up to 2.	55 channels		

ChannelEventStatus DATA_0 to DATA_3 UI4

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	EventMax Power
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
EventCon- stantPower	EventVoltage BoundLower	EventVoltageB oundUpper	EventVoltage RampDown	EventVoltage RampUp	EventCurrent RampDown	EventCurrent RampUp	EventEndOf CurrentRamp
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
EventVoltage Limit Exceeded	EventCurrent Limit Exceeded	EventTrip	Event External Inhibit	EventVoltageB ounds Exceeded	EventCurrent Bounds Exceeded	EventArc Error	Reserved
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
EventCon- stantVoltage	EventCon- stantCurrent	Event Emergency	EeventEndOfV oltageRamp	EOn2Off	EventInput Error	EventArc	Reserved

Bit	Bolocking	Description
EventMaxPower		
EventConstantPower		Constant Power has been or is active
EventVoltageBoundLower		The measured voltage has been or is lower than the programmed lower bound
EventVoltageBoundUpper		The measured voltage has been or is higher than the programmed upper bound
EventVoltageRampDown		Voltage ramp down to a lower absolute value has been started
EventVoltageRampUp		Voltage ramp up to a higher absolute value has been started
EventCurrentRampDown		Current ramp down has been started
EventCurrentRampUp		Current ramp up has been started
EventEndOfCurrentRamp		A running current ramp has reached its destination
EventVoltageLimitExceeded	Yes	Voltage limit Vlim has been or is exceeded
EventCurrentLimitExceeded	Yes	Current limit llim has been or is exceeded
EventTrip	Yes	Event: Trip is set when Voltage or Current limit or lset has been exceeded (when KillEnable=1 or Delayed Trip is configured)
EventExternalInhibit	Yes	External Inhibit has been or is active
EventVoltageBounds		Measured voltage has been or is out of bounds
EventCurrentBounds		Measured current has been or is out of bounds
EventArcError		An Arc Error event has occured
EventConstantVoltage		Constant Voltage has been or is active
EventConstantCurrent		Constant Current has been or is active
EventEmergencyOff	Yes	Channel was shut down with emergency off
EventEndOfRamp		A running voltage ramp has reached its destinationThe channel was switched off due to a blocking event (Voltage/Current Limit, Current Trip, External Inhibit or Emergency Off)
EventOnToOff		The channel was switched off due to a blocking event (Voltage/Current Limit, Current Trip, External Inhibit or Emergency Off)
EventInputError		An Input Error has occurred
EventArc		Arc or Regulation Error has been or is active

Table 12

An event bit is permanently set if the status bit is 1 or is changing to 1. Different to the status bit an event bit isn't automatically reset. A reset has to be done by the user by writing an 1 to this event bit.

3.5.1.7 Channel event mask (single write- and single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHANNEL	DATA_1	DATA_0
master write access	0	0x4003		Mx		
master read-	1	0x4003	Mx ChannelEventMask		ChannelEventMask	
master single MBR read-	1	0x6003	003 Member			Offset
HV board write access	0	0x4003/0x600)3	Mx	ChannelEventMask	
Notes:						
Mx	Channel		0	255		
Member	Members		1	16		
Offset	Channel mer	nber offset	0, 1	6, 32 to acc	ess up to 255 channels	
ChannelEventMask	DATA_0 to DA	ATA_1	UI2			

3.5.1.8 Channel event mask32 (single write- and single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID		CHANNEL	DATA_3	DATA_2	DATA_1	DATA_0
master single read-	1	0x4083		Mx				
master single MBR read-	1	0x6083		Member		Offset		
HV board write access	0	0x4083/0x608	3	Mx	ChannelEv	entStatus32		
Notes: Mx Member Offset	Channel Members Channel men		1	6, 32 too ac	cess up to 2	55 channels		
ChannelEventMask32	DATA_0 to DA	ATA_3	UI4					

ChannelEventMask DATA_0 to DATA_3 UI4

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Reserved	MaskEvent Voltage BoundLower	MaskEvent Voltage BoundUpper	MaskEvent Voltage RampDown	MaskEvent Voltage RampUp	MaskEvent Current RampDown	MaskEvent Current RampUp	MaskEvent EndOf CurrentRamp
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
MaskEvent VoltageLimit	MaskEvent CurrentLimit	MaskEvent Trip	MaskEvent External Inhibit	MaskEvent Voltage Bounds	MaskEvent Current Bounds	MaskEvent ArcError	Reserved
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
MaskEvent Constant Voltage	MaskEvent Constant Current	Reserved	MaskEvent EndOf VoltageRamp	MaskEvent On To Off	MaskEvent Input Error	MaskEvent ARC	Reserved

The function of the ChannelEventMask register is described in 3.5.5.1 Channel events

Bit	Description
MaskEventMaxPower	Mask the Event Max Power
MaskEventConstantPower	Mask the Event Constant Power
MaskEventVoltageBoundLower	Mask the Event Voltage Bound Exceeded Lower
MaskEventVoltageBoundUpper	Mask the Event Voltage Bound Exceeded Upper
MaskEventVoltageRampDown	Mask the Event Voltage Ramp Down
MaskEventVoltageRampUp	Mask the Event Voltage Ramp Up
MaskEventCurrentRampDown	Mask the Event Current Ramp Down
MaskEventCurrentRampUp	Mask the Event Current Ramp Up
MaskEventEndOfCurrentRamp	Mask the Event End Of Current Ramp
MaskEventVoltageLimit	Mask the Event Hardware- voltage limit has been exceeded
MaskEventCurrentLimit	Mask the Event Hardware- current limit has been exceeded
MaskEventTrip	Mask the Event Voltage limit or Current limit or Iset has been exceeded (when KillEnable=1)
MaskEventExtInhibit	Mask the Event External Inhibit
MaskEventVoltageBounds	Mask the Event Voltage out of bounds
MaskEventCurrentBounds	Mask the Event Current out of bounds
MaskEventArcError	Mask the Event Arc error
MaskEventConstantVoltage	Mask the Event Constant Voltage
MaskEventConstantCurrent	Mask the Event Constant Current
MaskEventEndOfRamp	Mask the Event End Of Voltage Ramp
MaskEventOnToOff	Mask the Event change from state on to off
MaskEventInputError	Mask the Event Input Error
MaskEventArc MaskEventRegulationError	Mask the Event Arc active Mask the Regulation Error (Option - fast error evaluation)

Table 13

CAUTION!

Module in mode KILL disable:

If a bit of the ChannelEventStatus register is set to "1" and the corresponding bit in the ChannelEventMask register is "0", it is not necessary to clear the ChannelEventStatus bit to switch on HV again.

If a bit of the ChannelEventMask register is set to "1" and if the corresponding bit in the ChannelEventStatus is set to "1" by the module firmware then a reset of the corresponding ChannelEventStatus bits is necessary before a switch on the HV of this channel is possible again.

Module in mode KILL enable: A reset of the ChannelEventStatus bits is necessary before switch on the HV of this channel again.

3.5.1.9 Delayed trip time

EDCP frame:

Access	Access DATA_DIR		DATA_ID	CHN	DATA_1	DATA_0
master single read- 1		1	0x4005	Mx		
master single MBR read-		1	0x4005	Member		Offset
HV board write access 0		0	0x4005 / 0x6003	Mx		
Notes: Mx Member Offset Timeout-time				s up to 255 channels to 4095 ms)		

Time in milliseconds until delayed trip action becomes active and channel is in current control state. Note special functionality for modules with a second low current range – see manual "Delayed trip EHS.pdf", see 4 Appendix.

3.5.1.10 Delayed trip action (single/multiple single read-write access)

Access		DATA_DIR	DATA_ID	CHN	DATA_0	DATA_1	DATA_2	
master write access		0	0x4006	Mx	Action			
master read-		1	0x4006	Mx				
master single MBR read-		1	0x6006	Member		Offset	Action	
HV board write ac	HV board write access 0		0x4006	Mx	Action			
Notes:								
Mx	Channel		0 255	0 255				
Member Members		1 16	1 16					
Offset Channel member offset			0, 16, 32 to acce	ess up to 255 ch	nannels			

Action	Action if a trip event will be initiated
0	no action
1	ramp down high voltage of the channel
2	shut down high voltage of the channel without ramp
3	shut down the whole module without ramp
4	switch off the delayed trip function

3.5.1.11 External channel inhibit

EDCP frame:

Access	DATA_DIR	DATA_ID	CHN	DATA_0	DATA_1	DATA_2
master write access	0	0x4007	Mx	Action		
master read-	1	0x4007	Mx			
master single MBR write-	1	0x6007	Member	Member		Action
HV board write access	0	0x4007 / 0x6007	Mx	Action		
Notes:			·	·	·	
Mx	Channel	0 25	55			

MX	Channel	0 255
Member	Members	1 16
Offset	Channel member offset	0, 16, 32 to access up to 255 channels

Action	Action if an inhibit signal will be triggered
0	no action
1	ramp down high voltage of the channel
2	shut down high voltage of the channel without ramp
3	shut down the whole module without ramp
4	switch off the external inhibit function

3.5.1.12 VoltageRampPriority (single write- and single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_1	DATA_0
master single read-	1	0x4010		Mx		
master single MBR read-	1	0x4010		Member		Offset
HV board write access	0	0x4010 /	0x6010	Mx		
Notes: Mx Member Offset VoltageRampPriority	Channel Members Channel member of DATA_0 to DATA_1			to access up to 255 to channel number)	s channels	

Time in milliseconds until delayed trip action becomes active and channel is in current control state. Note special

3.5.1.13 Set voltage (single write- and single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0			
master write access		0	0x4100	Mx	VoltageSet						
master read -		1	0x4100	Mx							
master single MBR read-		1	0x6100	Member		Offset					
HV board write access		0	0x4100/0x6100	Mx	VoltageSet						
Notes:											
Mx	Channel		0 255								
Member	Member Members		1 16								
Offset Channel member offset		0, 16, 32 to ac	cess up to 25	55 channels							
VoltageSet DATA_0 to DATA_3 [V]			R4								

The VoltageSet value is the preset for voltage generation. Allowed values are between 0 and the actual hardware limit value. If written values are between the hardware limit and the nominal value, then the module reduces these values to the value of the actual hardware limit. If written values are higher than the nominal data or lower than 0 an input error is indicated by setting the bit InputError.

If the channel is switched 'ON' then the voltage will be ramped to the set value after the receipt of this access. Otherwise the set value will just be stored and only used for ramping to the set voltage after the channel will be switched 'ON'.

3.5.1.14 Set current / trip (single write- and single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0		
master write access	0	0x4101	Mx 0		CurrentSet (CurrentSet (CurrentTrip)				
master read -	1	0x4101		Mx						
master single MBR read-	1	0x6101	x6101 Member			Offset				
HV board write access	0	0x4101/0x6101 Mx		Mx	CurrentSet (CurrentTrip)					
Notes: Mx Member Offset CurrentSet (CurrentTrip)	Channel Members Channel me DATA_0 to D		0 1 0, 10 R4	16	cess up to 255	channels				

Allowed values are between 0 and the actual hardware limit value. If written values are between the hardware limit and the nominal value, then the module reduces these values to the value of the actual hardware limit. If written values are higher than the nominal data or lower than 0 an input error is indicated by setting the bit InputError.

The mode of action of this item depends on the setting of the signal Kill Enable (KILEna) in the ModuleControl register (see chapter 3.5.2.3 ModuleControl (module write- / read-write access)). If Kill Enable is 0, the value is interpreted as CurrentSet. If Kill Enable is 1, the value is CurrentTrip.

CurrentSet:

The CurrentSet value is the preset for current regulation. If the output current reaches or exceeds the Current Set value, the channel goes into Current Regulation mode. In this mode the output current is regulated at the CurrentSet value, but the output voltage is going to a value between 0V and Vset, depending of the external load.

When Current Control mode is active the bit isConstantCurrent of the ChannelStatus register and the bit EventConstantCurrent of the ChannelEventStatus are set, the bit isConstantVoltage of the ChannelStatus is reset.

CurrentTrip:

In Current Trip mode this value will be used as software current trip. If exceeding this value a current trip event will be registered. The green LED on front panel will be switched off.

The bits isTrip in the ChannelStatus and ETRP in ChannelEventStatus are set, the bit isNoSumError in the ModuleStatus is reset.

3.5.1.15 Voltage measurement (single/multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master read -		1	0x4102	Mx				
master single MBI	R read-	1	0x6102	Member	Offset			
HV board write access 0		0	0x4102/0x6102	Mx	VoltageMeasure			
Notes: Mx Member Offset VoltageMeasure	s member offse to DATA_3 [V]	, -,	access up to	255 channels				

3.5.1.16 Current measurement (single/multiple single read-write access)

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master read -		1	0x4103	Mx					
master single MBR read-		1	0x6103	Member		Offset			
HV board write access 0		0x4103/0x6103	Mx	CurrentMeasure					
Notes:									
Mx	Channel		0 255	0 255					
Member	Member	S	1 16	1 16					
Offset Channel member offset			et 0, 16, 32 to	access up to	255 channels				
CurrentMeasure	DATA_0	to DATA_3 [A]	R4						

3.5.1.17 Voltage bounds (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4104	MX	VoltageBounds			
master read -	1	0x4104	MX				
master single MBR read-	1	0x6104	Member		Offset		
HV board write access	0	0x4104 / 0x6104	MX	VoltageBounds			
Notes							

Notes:

 Mx
 Channel
 0 ... 255

 Member
 Members
 1 ... 16

Offset Channel member offset 0, 16, 32 ... to access up to 255 channels

VoltageBounds DATA_0 to DATA_3 [V] R4 (0 to VoltageNominal)

3.5.1.18 Current bounds (single write- / single/ multiple single read-write access)

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write acce	aster write access 0 0x4		0x4105	MX	CurrentBour	nds		
master read -	d - 1 0x		0x4105	MX				
master single MBR read- 1		1	0x6105	Member		Offset		
HV board write ac	HV board write access 0 0x		0x4105 / 0x6105	MX	CurrentBounds			
Notes:								
Mx	Channel		0 255					
Member	ember Members		1 16					
Offset	Offset Channel member offset		et 0, 16, 32 to	0, 16, 32 to access up to 255 channels				
CurrentBounds DATA_0 to DATA_3 [A]			R4 (0 to Curre	ntNominal)				

3.5.1.19 Nominal voltage (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master read -		1	0x4106	MX				
master single MBF	R read-	1	0x6106	Member	mber Offset			
HV board write access 0 0x		0x4106 / 0x6106	MX	VoltageNominal				
Notes: Mx Channel 0 255 Member Members 1 16 Offset Channel member offset 0, 16, 32 VoltageNominal DATA 0 to DATA 3 [V] R4			1 16 et 0, 16, 32 to	access up to	255 channels			

3.5.1.20 Nominal current (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master read -		1	0x4107	MX				
master single MBF	R read-	1	0x6107	Member		Offset		
HV board write access 0 0x		0x4107 / 0x6107	MX	CurrentNominal				
Notes: Mx Channel 0 255 Member Members 1 16 Offset Channel member offset 0, 16, 32 CurrentNominal DATA 0 to DATA 3 [A] R4			1 16 et 0, 16, 32 to	access up to	255 channels			

3.5.1.21 Nominal power (single/ multiple single read-write access)

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master read -		1	0x4108	MX				
master single MBR read- 1 0x		0x6108	Member		Offset			
HV board write access 0 0x		0x4108 / 0x6108	MX	PowerNominal				
Notes:								
Mx	Channel		0 255					
Member	Member	S	1 16					
Offset	Channel member offset 0, 16, 32 t			access up to	255 channels			
PowerNominal	DATA_01	to DATA_3 [W]	R4					

3.5.1.22 Current measurement range¹ (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_4	DATA_3	DATA_2	DATA_1	DATA_0
master read -		1	0x4109	MX					
master single MBR read-		1	0x6109	Member	Member				
HV board write access 0		0	0x4109 / 0x6109	MX	CurrentMeasure				Range
Notes:	0 255								
Member	Channel Member			1 16					
Offset	Channel	member offs	set	0, 16, 32	to access	up to 255 cl	nannels		
CurrentMeasure DATA_1 to DATA_4 [A] Range DATA_0=0 – high range (≥20µA) DATA_0=1 – low range (<20µA)			R4 UI1						

INFORMATION

The information channel status bit isLowCurrentRange can be used also.

3.5.1.23 VoltageBottom (single/ multiple single read-write access)

Access	SS DATA_DIR DATA_ID			CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master write access		0	0x410A	(410A		VoltageBottom			
master read - 1		1	0x410A	Mx					
master single MBR read- 1		1	0x610A		Member		Offset		
HV board write access 0		0	0x410A/0x61	0A	A Mx VoltageBottom		ttom		
Notes: Mx Channel Member Members				0 25 1 16	_				
Offset Channel member offset VoltageSet DATA_0 to DATA_3 [% of V _{set}]			0, 16, 32 to access up to 255 channels R4						

 $[\]ensuremath{\text{1}}$ - for devices E08F2, E08F7, E08C2, N06C2 and N04C2 only

3.5.1.24 VCT Coefficient² (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master write acce	master write access 0 0x4120		0x4120		Mx	VctCoefficient				
master read -		1	0x4120		Mx					
master single MBI	master single MBR read- 1 0x6120		0x6120		Member		Offset			
HV board write ac	HV board write access 0 0x4120/0		0x4120/0x6120		Mx	VctCoefficie	nt			
Notes: Mx Channel Member Members				0 2	16	. 255				
Offset Channel member offset VctCoefficient DATA_0 to DATA_3 [V/K]		0, 16, 32 to access up to 255 channels R4								

3.5.1.25 Temperature external³ (single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master read -	1	0x4121		Mx				
master single MBR read-	1	0x6121		Member		Offset		
HV board write access	0	0x4121/0x612	0x4121/0x6121		Temperature	eExternal		
Notes: Mx Member Offset TemperatureExternal		Members 1			s up to 255 ch	nannels		

² Option VCT only3 Option VCT only

3.5.1.26 Resistor external⁴ (single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master write access	0	0x4122	MX	ResistorExternal				
master read -	1	0x4122	Mx					
master single MBR read-	1	0x6122	Member		Offset			
HV board write access	0	0x4122/0x6122	Mx ResistorExternal					

Notes:

MxChannel0 ... 255MemberMembers1 ... 16

Offset Channel member offset 0, 16, 32 ... to access up to 255 channels

ResistorExternal DATA_0 to DATA_3 $[\Omega]$ R4

3.5.1.27 VoltageRampSpeedUp (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master write access	0	0x4123	0x4123		VoltageRampSpeedUp				
master read -	1	0x4123		MX					
master single MBR read-	1	0x6123	0x6123		•	Offset			
HV board write access	0	0x4123 / 0x612	23	MX	VoltageRampSpeedUp				
Notes: Mx Member Offset VoltageRampSpeedUp	-			16 6, 32 to acc	tess up to 255 SpeedMin to \		SpeedMax)		

3.5.1.28 VoltageRampSpeedDown (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0		
master write access	0	0x4124		MX	VoltageRam	VoltageRampSpeedDown				
master read -	1	0x4124		MX						
master single MBR read-	1	0x6124		Member		Offset				
HV board write access	0	0x4124 / 0x61	0x4124 / 0x6124		VoltageRampSpeedDown					
Notes:										
Mx	Channel		0	255						
Member	Members		1	16						
Offset	Channel mer	mber offset	0, 16, 32 to access up to 255 channels							
VoltageRampSpeedDown	DATA_0 to D	ATA_3 [V/s]	R4 (VoltageRampSpeedMin to VoltageRampSpeedMax)							

4 Option EHS STACK

3.5.1.29 CurrentRampSpeedUp (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4123	0x4123		CurrentRampSpeedUp			
master read -	1	0x4123		MX				
master single MBR read-	1	0x6123	0x6123 M			Offset		
HV board write access	0	0x4123 / 0x61	23	MX	CurrentRampSpeedUp			
Notes: Mx Member Offset CurrentRampSpeedUp	Channel Members Channel me DATA_0 to D			16 6, 32 to acc	ess up to 255 SpeedMin to		oSpeedMax)	

3.5.1.30 CurrentRampSpeedDown (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4124	0x4124		CurrentRampSpeedDown			
master read -	1	0x4124		MX				
master single MBR read-	1	0x6124		Member		Offset		
HV board write access	0	0x4124 / 0x61	24	MX	CurrentRampSpeedDown			
Notes: Mx Member Offset VoltageRampSpeedDown	Channel Members Channel med DATA_0 to D		-	16 6, 32 to acc	ess up to 255 SpeedMin to		SpeedMax)	

3.5.1.31 VoltageRampSpeedMin (single write- / single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID	ATA_ID C		DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4127	x4127 M		VoltageRam	VoltageRampSpeedMin		
master read -	1	0x4127	4127 MX					
master single MBR read-	1	0x6127	6127 Me		Offset			
HV board write access	0	0x4127 / 0x61	x4127 / 0x6127 M		VoltageRam	pSpeedMin		
Notes:								
Mx	Channel		0	255				
Member	Members		1	16				
Offset	Channel me	mber offset	ber offset 0, 16,		ess up to 255	channels		
VoltageRampSpeedMin	DATA_0 to D	ATA_3 [V/s]	R4					

3.5.1.32 VoltageRampSpeedMax (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4128	x4128 M		VoltageRam	VoltageRampSpeedMax		
master read -	1	0x4128		MX				
master single MBR read-	1	0x6128		Member	•	Offset		
HV board write access	0	0x4128 / 0x61)x4128 / 0x6128		VoltageRam	oSpeedMax		
Notes:								
Mx	Channel		0	255				
Member	Members		1 10					
Offset	Channel me	mber offset	per offset 0, 16,		ess up to 255	channels		
VoltageRampSpeedMax	DATA_0 to D	ATA_3 [V/s]	R4					

3.5.1.33 CurrentRampSpeedMin (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4129	x4129 N		CurrentRam	oSpeedMin		
master read -	1	0x4129	4129 M					
master single MBR read-	1	0x6129	6129 M		er Offset			
HV board write access	0	0x4129 / 0x612	x4129 / 0x6129 N		CurrentRampSpeedMin			
Notes: Mx Member Offset CurrentRampSpeedMin	Channel Members Channel med DATA_0 to D		0 1 0, 16 R4	16	ess up to 255	channels		

3.5.1.34 CurrentRampSpeedMax (single write- / single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4130	(4130 M)		CurrentRampSpeedMax			
master read -	1	0x4130		MX				
master single MBR read-	1	0x6130	5130 Me		Offset			
HV board write access	0	0x4130 / 0x61	x4130 / 0x6130 M		CurrentRam	pSpeedMax		
Notes:								
Mx	Channel		0	255				
Member	Members		1	16				
Offset	Channel mei	mber offset	per offset 0, 16, 3		ess up to 255	channels		
CurrentRampSpeedMax	DATA_0 to D	ATA_3 [A/s]	R4					

3.5.1.35 PowerSet (single write- / single/ multiple single read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		CHN	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x4134		MX	PowerSet			
master read -	1	0x4134		MX				
master single MBR read-	1	0x6134		Member		Offset		
HV board write access	0	0x4134 / 0x61	134	MX	PowerSet			
Notes:								
Mx	Channel		0	255				
Member	Members		1	16				
Offset	Channel member offset			6, 32 to acc	ess up to 255	channels		
PowerSet DATA 0 to DATA 3 [W]			R4					

3.5.1.36 PowerMeasure (single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID	ATA_ID (DATA_3	DATA_2	DATA_1	DATA_0
master read -	1	0x4134	4134 MX					
master single MBR read-	1	0x6134	5134 Me		Member Offs			
HV board write access	0	0x4134 / 0x61	4134 / 0x6134 MX		PowerMeasu	ıre		
Notes: Mx Member Offset PowerMeasure	Channel Members Channel med DATA_0 to D		0 1 0, 16 R4	16	ess up to 255	channels		

3.5.1.37 Output mode⁵ (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR		DATA_ID	CHN	DATA_0	
master write a	iccess	0		0x4140	Mx	Mode	
master read -		1		0x4140	Mx		
master single	MBR read-	1		0x6140	Member	Offset	
HV board write	e access	0		0x4120/0x6120	Mx	Mode	
Notes:							
Mx	Chani	nel	0	. 255			
Member	Memb	pers	1	. 16			
Offset	ffset Channel member Offset		0, 16, 32 to access up to 255 channels				
Mode	DATA	_0	Uľ	(HV MODE = 1, 2 or 3)			

3.5.1.38 Output polarity⁶ (single/multiple single read-write access)

EDCP frame:

Access		DATA_DIR		DATA_ID	CHN	DATA_0
master write access		0		0x4141	Mx	Polarity
master read -		1		0x4141	Mx	
master single MBR re	ead-	1		0x6141	Member	Offset
HV board write acces	SS	0		0x4121/0x6121	Mx	Polarity
Notes:						
Mx C	hanr	nel	0	. 255		
Member M	1emb	ers	1	. 16		
Offset C	hanr	nel member offset	0, 1	16, 32 to access up to 25	5 channels	
Polarity D	ATA_	_0	SI1	(Positive = +1, Negative =	-1)	

3.5.1.39 Output voltage mode⁷ (single/ multiple single read-write access)

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master read -		1	0x4142	Mx					
master single Mi	BR read-	1	0x6142	Member		Offset			
HV board write a	ccess	0	0x4142/0x6142	Mx	VoltageMode	e			
Notes:									
Mx	Channel		0 255	0 255					
Member	Member	S	1 16						
Offset	Channel member offset		0, 16, 32 to	0, 16, 32 to access up to 255 channels					
VoltageMode	eMode DATA_0 to DATA_3 [V]		R4 (+6000, +4	R4 (+6000, +4000, +2000, -2000, -4000 or -6000)					

⁵ Option HV-MODE SWITCHABLE

⁶ Option POLARITY SWITCHABLE

⁷ Option HV-MODE SWITCHABLE

3.5.1.40 Output current mode⁸ (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0
master read -		1	0x4143	Mx				
master single ME	R read-	1	0x6143	Member		Offset		
HV board write a	ccess	0	0x4143/0x6143	Mx	CurrentMode			
Notes:								
Mx	Channel		0 255					
Member	Members	S	1 16					
Offset	Channel	member offset	0, 16, 32 to	access up to 25	5 channels			
CurrentMode	DATA_0 t	o DATA_3 [A]	R4 (+4.0E-3, +	3.0E-3, +2.0E-3,	+0.1E-3, -0.1E	-3,-2.0E-3, -3	3.0E-3 or -4.0	E-3)

3.5.1.41 Output voltage mode list⁹ (single/ multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master read -		1	0x4150 - 0x415f	Mx					
master single MBF	R read-	1	0x6150 - 0x415f	Member		Offset			
HV board write acc	cess	0	0x4150/0x6150	Mx	VoltageMode	eList			
Notes:									
Mx	Channel		0 255						
Member	lember Members		1 16	1 16					
Offset Channel member offset		0, 16, 32 to	0, 16, 32 to access up to 255 channels						
VoltageModeList DATA_0 to DATA_3 [V]			R4 (+6000, +40	R4 (+6000, +4000, +2000, -2000, -4000 or -6000)					

3.5.1.42 Output current mode list¹⁰ (single/ multiple single read-write access)

Access		DATA_DIR	DATA_ID	CHN	DATA_3	DATA_2	DATA_1	DATA_0	
master read -		1	0x4143	Mx					
master single MBI	R read-	1	0x6143	Member		Offset			
HV board write ac	cess	0	0x4143/0x6143	Mx	CurrentMod	e			
Notes:									
Mx	Channel		0 255						
Member	Member	S	1 16						
Offset	t Channel member offset			0, 16, 32 to access up to 255 channels					
VoltageMode	DATA_0 t	to DATA_3 [A]	R4 (+4.0E-3, +	3.0E-3, +2.0E-3,	+0.1E-3, -0.1E	-3,-2.0E-3, -3	3.0E-3 or - 4.	0E-3)	

⁸ Option HV-MODE SWITCHABLE

⁹ Option HV-MODE SWITCHABLE

¹⁰ Option HV-MODE SWITCHABLE

3.5.1.43 Group number (single/multiple single read-write access)

EDCP frame:

Access		DATA_DIR	DATA_ID	CHN	DATA_0		
master write acc	master write access 0		0x4200	Mx	GROUP		
master read -		1	0x4200	Mx			
master single M	master single MBR read- 1		0x6200	Member	mber		GROUP
HV board write access		0	0x4200	Mx	GROUP		
Notes:							
Mx Channel				0 255			
Member	ber Members		1 16				
Offset Channel member offset		0, 16, 32 to access up to 255 channels					
Group number of the channel members			0 255				

With a group number GROUP for each channel, channels can be combined to groups involving all connected modules. The NMT channel group set and the NMT module set frames (described on page 39) send broadcast information for all channels, which have the same group number.

3.5.2 EDCP Module Accesses

3.5.2.1 ModuleStatus (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
master read-	1	0x1000		
HV board write access	0	0x1000	ModuleStatus	
Notes: ModuleStatus DATA	_0 to DATA_1 UI	2		

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
isKillEnable	isTemperature Good	isSupplyGood	isModuleGood	isEvntActive	isSafetyLoop Good	isNoRamp	isNoSumError
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Reserved	isInputError	isHardware VoltageLimit Good	needService	isHighVoltage On	isLiveInsertion	Reserved	isAdjust

3.5.2.2 ModuleStatus32 (module read-write access)

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1080				
HV board write access	0	0x1080	ModuleStatus32			
Notes: ModuleStatus32 DATA_0 to DATA_4 UI4						

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit23	Bit22	Bit21 ⁽¹	Bit20	Bit19	Bit18	Bit17	Bit16 ⁽¹
Reserved	Reserved	is Voltage Ramp Speed Limited	Reserved	Reserved	Reserved	Reserved	is Fast Ramp Down
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
isKillEnable	is Tempe- rature Good	isSupplyGood	isModule Good	isEvent Active	isSafetyLoop Good	isNoRamp	isNoSum Error
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Reserved	is Input Error	isHardware VoltageLimit Good	needService	isHigh Voltage On	isLiveInsertion	Reserved	is Fine Adjustment
Notes:		·	1	1	1		,

The status bits as there are IsTemperatureGood, IsSupplyGood, IsModuleGood, IsEventActive, IsSafetyLoopGood, IsNoRamp and IsNoSumError indicate the single status for the complete module.

The status bit IsCommandComplete indicates whether all CAN commands given to the module have been executed.

Bit Name	Description						
isKillEnable	Module state of kill enable						
		dule in state kill disable dule in state kill enable					
isTemperatureGood	Module temperature good						
	isTemperatureGood=0	If module temperature is higher than 55°C then all channel are switched off permanently					
	isTemperatureGood=1	module temperature is within working range					
isSupplyGood	Power supply good						
	isSupplyGood=0	supply voltages are out of range (range of 24V \pm 1-10% and of 5V \pm 1-5%)					
	isSupplyGood=1	supply voltages are within range					
isModuleGood	Module in state good	Module in state good					
	(ETN	dule is not good, that means (isnoSERR AND MPngd OR ESPLYngd OR ESFLPngd))==0					
	NO ⁻	dule is good, that means (isnoSERR AND (ETMPngd OR ESPLYngd OR ESFLPngd))==1					
	`	module event status also)					
isEventActive	Any event is active and mask is s						
		Event is active Event is active					
isSafetyLoopGood	Safety loop closed						
	isSafetyLoopGood=0 isSafetyLoopGood=1	safety loop is broken -VO bas been shut off, safety loop is closed					
isNoRamp	All channels stable, no ramp acti	ve					
	isNoRamp=0 voltage o isNoRamp=1 no chann	utput is ramping in at least one channel el is ramping					
isNoSumError	All channels without failure						
	curr	age limit, current limit, trip, voltage bound or ent bound has been exceeded in at least one of the external INHIBIT					
		rror, reset by reset of the corresponding flag of the					
	erro	uation of the 'Channel Status' over all channels to a sum or flag					
		IM&CLIM&CTRP&EINH&VBND&CBND=0 o errors					

Bit Name	Description				
isInputError	Input error in connection with a module access				
	isInputError=1 input error in connection with a module access isInputError=0 no input error in connection with a module access				
isHardwareVoltageLimitGood	Hardware voltage limit in proper range, forHV distributor modules with current mirror only				
	isHardwareVoltageLimitGood=0 hardware voltage limit not in proper range isHardwareVoltageLimitGood=1 hardware voltage limit in proper range				
isServiceNeeded	Hardware failure detected (consult iseg Spezialelektronik GmbH)				
	isServiceNeeded=0 Module is ready for working isServiceNeeded=1 Module need a service				
isHighVoltageOn	At least one channel generates a high voltage				
	isHighVoltageOn=0 No high voltage will be generated isHighVoltageOn=1 At least one channel generates a high voltage output.				
	(Modules with 7 digit serial number only.)				
isLiveInsertion	Mode live insertion				
	isLiveInsertion=0 no Live Insertion mode isLiveInsertion=1 Live Insertion mode				
isFineAdjustment	Mode of the fine adjustment				
	isFineAdjustment=0 Fine adjustment is off. isFineAdjustment=1 Fine adjustment is on (default).				
Reserved					

Table 14

3.5.2.3 ModuleControl (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0	
master write access	0	0x1001	ModuleControl		
master read-	1	0x1001			
HV board write access	0	0x1001	ModuleControl		
Notes: ModuleControl DATA_0 to DATA_1 (Bit 0 -15) UI2					

3.5.2.4 ModuleControl32 (module write- / read-write access)

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master write	0	0x1081	ModuleCor	itrol32		
master read-	1	0x1081				
HV board write access	0	0x1081	ModuleCor	itrol32		
Notes: ModuleControl32 DATA_0 to DATA_3 (Bit 0 -31) UI4						

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	setRelay Three	disable VoltageRamp SpeedLimit
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Reserved	set KillEnable	setR2	setFine Adjustment	setBigEndian	Reserved	Reserved	Reserved
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
setRelayOne	doClear	setInterlock	doMultiplex	Reserved	Reserved	Reserved	Reserved
Notes:	,	ı					,

Bit	Description				
setRelayThree					
disableVoltageRampSpeedLimit	Switch off voltage ramp speed	limitation			
killEnable	Kill function				
	SetKILL = 0 setKILL = 1	kill function disable kill function enable			
adjust	Switch ON of fine adjustment				
	setADJ = 0 setADJ = 1	fine adjustment OFF fine adjustment ON			
setBigEndian	Order of bytes in word: 0 = Litt	ele Endian (INTEL); 1 = Big Endian (MOTOROLA)			
	setENDN = 1	big endian (MOTOROLA format)			
clearKill	Hardware ClearKill signal and clear all event signals of module and channels				
	doCLEAR =1	Hardware ClearKill signal and clear all event signals of the module and the channels			
	doCLEAR=0	no action			
Interlock	Interlock signal CRATE_ENABLE	(WIENER MPOD crate, active TTL high)			
	setILK= 1	INTERLOCK signal in order to switch off HV and set bit EEINH of the EventStatus for all channels			
	setILK=0 bit E	reset the INTERLOCK signal in order to clear the EINH of the EventStatus for all channels			
doMultiplex	Switch on multiplexing, for elec	tronic load (EZL) only			
	doMux = 0 doMux = 1	switch off multiplexing switch on multiplexing			
setRelayOne	Switch on load one, for electron	nic load (EZL) only			
setRelayTwo	Switch on load two, for electron	nic load (EZL) only			
	setR1/2/3 = 0	switch off load 1, 2 or 3			
Reserved	setR1/2/3 = 1	switch on load 1, 2 or 3			

Table 15

3.5.2.5 ModuleEventStatus (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
master write	0	0x1002	ModuleEventStatus	
master read-	1	0x1002		
HV board write access	0	0x1002	ModuleEventStatus	
Notes: ModuleEventStatus	DATA_0 to DATA_1	UI2		

3.5.2.6 ModuleEventStatus32 (single/ multiple single read-write access)

Access	DATA_DIR	DATA_ID	DATA_3 DATA_2	DATA_1	DATA_0
master write	0	0x1082	ModuleEventStatus32		
master read-	1	0x1082			
HV board write access	0	0x1082	ModuleEventStatus32		
Notes: ModuleEventStatus	DATA_0 to DATA_1	UI2			

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Reserved	Event Temperature Not Good	Event Supply Not Good	Reserved	Reserved	Event Safety Loop Not Good	Reserved	Reserved
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Reserved	Event Input Error	Event Hardware Voltage Limit Not Good	Event Service	Reserved	Event Live Insertion	Reserved	Reserved

Bit	Name	Description
ETMPngd	Event Temperature Not Good	Event: Temperature is above 55°C
ESPLYngd	Event Supply Not Good	Event: at least one of the supplies is not good
ESFLPngd	Event Safety Loop Not Good	Event: Safety loop is open
EIERR	Event Input Error	Event: input error in connection with a module access
EHwVLngd	Event Hardware Voltage Limit Not Good	Event: Hardware voltage limit is not in proper range, only for HV distributor modules with current mirror;
ESrvs	Event Service	Event: A hardware failure of the HV module has been detected. The HV will switched off without a possibility to switch on again. Please consult the iseg Spzialelektronik GmbH.
ELVINS	Event Live Insertion	Event live insertion to prepare a hot plug of a module
res	Reserved	

Table 16

3.5.2.7 ModuleEventMask (module write- / read-write access)

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
master write	0	0x1003	ModuleEventMask	
master read-	1	0x1003		
HV board write access	0	0x1003	ModuleEventMask	
Notes: ModuleEventMask	DATA_0 to DATA_1	UI2		

3.5.2.8 ModuleEventMask32 (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3 DATA_2	DATA_1	DATA_0
master write	0	0x1083	ModuleEventMask32		
master read-	1	0x1083			
HV board write access	0	0x1083	ModuleEventMask32		
Notes: ModuleEventMask32	DATA_0 to DATA_3	UI3			

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Reserved	Mask Event Temperature Not Good	Mask Event Supply Not Good	Reserved	Reserved	Mask Event Safety Loop Not Good	Reserved	Reserved
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Reserved	Mask Event Input Error	Mask Event Hardware Voltage Limit Not Good	Reserved	Reserved	Reserved	Reserved	Reserved

Bit	Name	Description
METMPngd	Mask Event Temperature Not Good	MEventMask: Temperature is above 55°C
MESPLYngd	Mask Event Supply Not Good	MEventMask: at least one of the supplies is not good
MESFLPngd	Mask Event Safety Loop Not Good	MEventMask: Safety loop (SL) is open
MEIERR	Mask Event Input Error	MEventMask: Input error in connection with a module access
MEHwVLngd	Mask Event Hardware Voltage Limit Not Good	MEventMask: Hardware voltage limit is not in proper range, only for HV distributor modules with current mirror;
Reserved	Reserved	

Table 17

All bits of the EventMask register are set to "0" after the power on reset.

Module in mode KILL enable: If a bit of the EventStatus register is set to "1" and the corresponding bit in the EventMask register is "0" no reset of the EventStatus bits is necessary before switch on the HV of any channel again.

If a bit of the EventMask register is set to "1" and if the corresponding bit in the EventStatus is set to "1" by the module firmware a reset of the corresponding EventStatus bits is necessary before a switch on the HV of any channel is possible.

Module in mode KILL enable: A reset of the EventStatus bits is necessary before switch on the HV of any channel is possible.

3.5.2.9 ModuleEventChannelStatus (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_2	DATA_1	DATA_0
master write access	0	0x1004	Offset	ModuleEventChannelStatus	
master read-	1	0x1004	Offset		
HV board write access	0	0x1004	Offset	ModuleEventChannelStatus	
Notes: Offset EventChannelStatus	DATA_2Channe DATA_0 to DAT		et 0, 16, 3 UI2	32 access up to 255 channels	

3.5.2.10 ModuleEventChannelStatus32 (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_2	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1084	Offset	ModuleEve	ntChannelSt	atus	
master read-	1	0x1084	Offset				
HV board write access	0	0x1084	Offset	ModuleEve	ntChannelSt	atus	
Notes: Offset EventChannelStatus32	DATA_2Channe DATA_0 to DAT	el member offse A_3	et 0, 16, 3 UI4	32 access u	p to 255 cha	nnels	

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	Ch29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
DIC23	BICZZ	DICZ I	BICZO	Бістэ	ысто	DICIT	Dicto
CH23	CH22	Ch21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	Ch13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH07	CH06	CH05	CH04	CH03	CH02	CH01	CH00

The n-th bit of the register is set, if an event is active in the n-th channel and the associated bit in the EventMask register of the n-th channel is set too.

CHn = EventStatus[n] & EventMask[n]

Reset of a bit is done by writing a 1 to this bit.

3.5.2.11 ModuleEventChannelMask (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_2	DATA_1	DATA_0
master write access	0	0x1005	Offset	ModuleEventChannelMask	
master read-	1	0x1005	Offset		
HV board write access	0	0x1005	Offset	ModuleEventChani	nelMask
Notes: Offset EventChannelMask	ffset DATA_2Channel member offset			to 255 channels	

3.5.2.12 ModuleEventChannelMask32 (module write- / read-write access)

EDCP Frame:

Access	DATA_DIR	DATA_ID	DATA_2	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1085	Offset	ModuleEve	ntChannelM	ask32	
master read-	1	0x1085	Offset				
HV board write access	0	0x1085	Offset	ModuleEve	ntChannelM	ask32	
Notes: Offset EventChannelMask32	DATA_2Channe DATA_0 to DAT	el member offse A_3	et 0, 16, 3 UI4	32 access u	p to 255 cha	nnels	

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Mask CH31	Mask CH30	Mask CH29	Mask CH28	Mask CH27	Mask CH26	Mask CH25	Mask CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Mask CH23	Mask CH22	Mask CH21	Mask CH20	Mask CH19	Mask CH18	Mask CH17	Mask CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Mask CH15	Mask CH14	Mask CH13	Mask CH12	Mask CH11	Mask CH10	Mask CH9	Mask CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00

This register decides whether a pending event leads to the sum event flag of the module or not. If the n-th bit of the Mask is set and the n-th channel has an active event in the ModuleEventChannelStatus the bit isEventActive in the ModuleStatus register is set.

3.5.2.13 ModuleEventGroupStatus (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1005		ModuleEventG	iroupStatus		
master read-	1	0x1005					
HV board write access	0	0x1005		ModuleEventG	FroupStatus		
Notes: EventGroupStatus	DATA_0 to DA	ГА_3 U	114				

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Group31	Group30	Group29	Group28	Group27	Group26	Group25	Group24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Group23	Group22	Group21	Group20	Group19	Group18	Group17	Group16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Group15	Group14	Group13	Group12	Group11	6 40	6 0	6 0
	Groupin	Group 13	Group 12	Groupin	Group10	Group9	Group8
Bit07	Bit06	Bit05	Bit04	Bit03	Group10 Bit02	Group9 Bit01	Bit00

The n-th bit of this double word register is set, if an event is active in the n-th Group.

Reset of a bit is done by writing a 1 to this bit.

3.5.2.14 ModuleEventGroupMask (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1006		ModuleEventG	iroupMask		
master read-	1	0x1006					
HV board write access	0	0x1006		ModuleEventG	iroupMask		
Notes: EventGroupMask	DATA_0 to DA	ΓA_3 UI4	4				

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Mask31	Mask30	Mask29	Mask28	Mask27	Mask26	Mask25	Mask24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Mask23	Mask22	Mask21	Mask20	Mask19	Mask18	Mask17	Mask16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Mask15	Mask14	Mask13	Mask12	Mask11	Mask10	Mask09	Mask08
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Mask07	Mask06	Mask05	Mask04	Mask03	Mask02	Mask01	Mask00

This register decides whether a pending event leads to the sum event flag of the module or not. If the n-th bit of the mask is set and the n-th group has an active event in the ModuleEventGroupStatus the bit isEventActive in the ModuleStatus register is set.

3.5.2.15 VoltageRampSpeed (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1100	VoltageRampS	Speed		
master read-	1	0x1100				
HV board write access	0	0x1100	VoltageRampS	Speed		
Notes: VoltageRampSpeed	DATA_0 to DA	TA_3 [%] R4				

Voltage ramp speed range (disable Kill) $1 \text{mV/s} \leq \text{Ramp speed} \leq 20\% \text{ of V}_0 \text{ max/s}$ Option: fast ramp $1 \qquad 1 \text{mV/s} \leq \text{Ramp speed} \leq 25\% \text{ of VoltageNominal}$ $2 \qquad 1 \text{mV/s} \leq \text{Ramp speed} \leq 50\% \text{ of VoltageNominal}$ $3 \qquad 1 \text{mV/s} \leq \text{Ramp speed} \leq 75\% \text{ of VoltageNominal}$

Voltage ramp speed range (enable Kill): 1mV/s ≤ Ramp speed ≤ 1% of V_{O max}/s

The speed of the voltage ramp in percent of the nominal voltage of the channel per second.

3.5.2.16 CurrentRampSpeed – current controlled modules only (module write- / read-write access) EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1101	CurrentRamp!	Speed		
master read-	1	0x1101				
HV board write access	0	0x1101	CurrentRamp!	Speed		
Notes: CurrentRampSpeed	DATA_0 to DA	TA_3 [%] R4				

Current ramp speed range: 2 % IO max/s ≤ Ramp speed ≤ IO max/s

The speed of the current ramp in percent of the nominal current of the channel per second.

3.5.2.17 VoltageMax – OPTION (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1102				
HV board write access	0	0x1102	VoltageMax			
Notes: HardwareVoltageLimit	DATA_0 to DAT	ΓA_3 [%] R4				

HV Modules with the OPTION hardware voltage limit can adjust VO max via the potentiometer Vmax.

For HV Modules without this OPTION VoltageMax equals to VO max.

The exceeding of the hardware voltage limit results in a limitation of the voltage when the KILL-enable.

The absolute value of the hardware voltage limit will compute by following:

Voltage limit of the channel x (Chx) = VoltageNominal[Chx] • VoltageMax

The module responds after the hardware voltage limit has been exceeded:

The green LED on front panel is off.

Depends of the kind of module:

Hardware KILL function controlled by the bit 'KILena' of the ModuleControl word:

KILL-enable = 1: The voltage will be switched off permanently without ramp.

ChannelEventStatus flag 'EVLIM' will be set.

KILL-enable = 0: The voltage will be reduced to the value of the actual hardware voltage limit.

ChannelStatus flag 'is VLIM' and ChannelEventStatus flag 'EVLIM' will be set.

Software KILL function controlled by the bit 'KILena' of the ChannelControl word:

KILL-enable = 1: Voltage will be switched off permanently without ramp.

ChannelEventStatus flag 'EVLIM' will be set.

KILL-enable = 0: Voltage will be switched off without ramp. If the output voltage arrives at 0 V the

ramping to set voltage will be restarted automatically. ChannelStatus flag 'is VLIM' and

ChannelEventStatus flag 'EVLIM' will be set.

3.5.2.18 CurrentMax - OPTION (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1103				
HV board write access	0	0x1103	CurrentMax			
Notes: HardwareCurrentLimit	DATA_0 to DAT	ΓA_3 [%] R4				

HV Modules with the OPTION CurrentMax can adjust the IO max via the potentiometer Imax.

HV Modules without this OPTION deliver IO max.

The absolute value of the hardware current limit will compute by following:

Current limit of the channel x (Chx) = CurrentNominal[Chx] • CurrentMax

The module responds after the hardware current limit has been exceeded:

The green LED on front panel is off.

Depends of the kind of module:

Hardware KILL function controlled by the bit 'KILena' of the ModuleControl word:

KILL-enable = 1: Voltage will be switched off permanently without ramp. ChannelEventStatus flag 'ECLIM' will be set.

KILL-enable = 0: Current will be reduced to the value of the actual hardware current limit. ChannelStatus flag 'is CLIM'

and ChannelEventStatus flag 'ECLIM' will be set.

Software KILL function controlled by the bit 'KILena' of the Channel Control word:

KILL-enable = 1: Voltage will be switched off permanently without ramp. ChannelEventStatus flag 'ECLIM' will be set.

KILL-enable = 0: Voltage will be switched off without ramp. If the output voltage arrives at 0 V the ramping to set

voltage will be restarted automatically. ChannelStatus flag 'isCLIM' and ChannelEventStatus flag

'ECLIM' will be set.

3.5.2.19 Supply24 (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1104				
HV board write access	0	0x1104	Supply24			
Notes: Supply24 DATA_0	to DATA_3 [V]	R4				

An 'out of range error' (see DCP group access: General status on page 90, in charpter 3.5.2.27 ADC SamplesPerSecond SPS (module write- / read-write access)) will be generated if deviation of voltage is more than $\pm 10\%$.

3.5.2.20 Supply5 (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1105				
HV board write access	0	0x1105	Supply5			
Notes: Supply5 DATA_0 t	to DATA_3 [V]	R4				

An 'out of range error' (see DCP group access: General status on page 90) will be generated if deviation of voltage is more than $\pm 5\%$.

3.5.2.21 BoardTemperature (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1106				
HV board write access	0	0x1106	BoardTemper	ature		
Notes: BoardTemperature	DATA_0 to DAT	ΓΑ_3 [°C] R4				

An 'out of range error' (see group access: General status on page 90) will be generated if the temperature is higher than +55°C.

3.5.2.22 Threshold to arm the errors detection (module write / read- write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x1107	ThresholdArmErrorDetection			
master read-	1	0x1107				
HV board write access	0	0x1107	ThresholdArm	ErrorDetection		
Notes:						
ThresholdArmErrorDetection DATA_0 to DATA_3 [A_0 to DATA_3 [%]	R4			

Factory setting for different kinds of HV modules is between 1V and to VO max/10 in percent to the nominal voltage of the channel.

The arming of the error detection is started while the actual voltage exceeds these value which has been stored before.

Exception: At the start of a ramp from zero the firmware evaluates that the feedback control will look in. If not, because the channel has a short or the hardware current limit is near to zero, then the channel will be switched off and a current error will be generated before the actual voltage is exceeding these threshold.

3.5.2.23 Serial number (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1200				
HV board write access	0	0x1200	SerialNumber			
Notes: SerialNumber DATA_0 t	to DATA_3	UI4				

serial number e.g. 471212

3.5.2.24 Firmware release (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID		DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1201					
HV board write access	0	0x1201		FrimwareRelea	ase		
Notes: FirmwareRelease	DATA_0 to DA	ГА_3	UI1[4]				

release e.g. 01.00.00.00

3.5.2.25 Bit rate (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
master read-	1	0x1202		
HV board write access	0	0x1202	BitRate	
Notes: BitRate DATA_0	to DATA_1 [kbit/s]	UI2		

Following bit rates are possible: 20, 50, 100, 125, 250 kbit/s

The new bit rate gets active after RESET or POWER OFF/ON. The bit rate of all modules in the system must be the same before a RESET or POWER/ON is made.

- The bit rate is set to 250 kbit/s ex works.
- Invalid bit rates will be ignored and the bit 'Input error' of the will be set.
- A correct write access storing the information permanently if a NMT stop has been sent before.

3.5.2.26 Firmware Name (module read-write access)

Access	DATA_DIR	DATA_ID	DATA_4/5	DATA_3	DATA_2	DATA_1	DATA_0	
master write access	0	0x1203	NameOfFirmv	vare				
master read-	1	0x1203						
HV board write access	0	0x1203	NameOfFirmv	NameOfFirmware				
Notes: NameOfFirmware DATA_0 to DATA_3 [ASCII] BSTR								

BSTR	Description
"E16D0"	EDS 16 channel per board, distributor module, range of Vmax from VO max to (VO max - 1kV)
"E16D1"	EDS 16 channel per board, distributor module
"E08C0"	EHS 8 channel per board, common GND module
"E08F0"	EHS 8 channel per board, floating GND module
"E08F2"	EHS 8 channel per board, floating GND module, two current measurement ranges
"E08F7"	EHS STACK 8 channel per board, cascaded floating GND channels
"E08C2"	EHS 8 channel per board, common floating GND module, two current measurement ranges
"E16C1	EHS 16 channel per board or 32 channels per module, common GND module
"E24C1	EHS FLEX 24 channel per board or 48 channels per module, common GND module
"E24D1"	EDS 24 channel per board, distributor module
"E24D3"	EDS 24 channel per board, distributor module
"E04B0"	EBS 4 channel per board, bipolar distributor module
"E08B0"	EBS 8 channel per board, bipolar distributor module
"E12B0"	EBS 12 channel per board, bipolar distributor module
"N06C2"	NHS NIM 6 channel module, common GND module, two current measurement ranges
"N04C2"	NHR NIM 4 channel module, common GND module, two current measurement ranges, reversible voltages (currents), polarity is switchable
"MICC"	MICC Multi channel Interface Crate Controller is a remote control interface for MMC Crates
"MICP"	MICP Multi channel Interface Crate PHQ Controller is a remote control interface for MMC Crates
"H101C0"	HPS 19", 1 channel HV Power Supply (300W, 800W)
"H101C1"	HPS 19" 1 channel HV Power Supply 1.5kW - 10kW
"H201C0"	HPS compact 1channel HV Power Supply (350W)

Table 18

3.5.2.27 ADC SamplesPerSecond SPS (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
master write	0	0x1204	SamplesPerSecond	
Master read-	1	0x1204		
HV board write access	0	0x1204	SamplesPerSecond	
Notes: SamplesPerSecond	DATA_0 to DATA_1 [SF	PS] UI2 (possible SPS ar	re 500, 100, 60, 50, 25, 10 and 5	5)

Adjusts the number of averages of the programmable ADC filter of the HV modules. Possible values are 500, 100, 60 and 50 SPS. Notch should be set with 60 SPS using a 110V line with 60Hz and 50 SPS using a 230V line with 50Hz in order to improve the common-mode rejection of these frequencies. However a SPS value of the ADC will increase the main loop time by 4 • 1/SPS for devices "E08F0", "E08F2" (see page 89 charpter 3.5.2.26 Firmware Name (module read-write access)) respectively by 4 • 1/SPS multiplied with the number of channels for device "E16D0", "E08C0" (see page 89).

Factory settings: E16D0, E08C0, E16C1, E08F0: 500 SPS

E08F2, E08C2: 50 SPS.

3.5.2.28 DigitalFilter (module write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
master write	0	0x1205	NumberOfSteps	
master read-	1	0x1205		
HV board write access	0	0x1205	NumberOfSteps	
Notes: NumberOfSteps DATA_0	to DATA_1 [Steps] UI	2 (possible steps are 1, 16, 0	64, 256,512 and 1024)	

The digital filter in the firmware of the processor reduces the white noise of the analog values of channel VoltageMeasure, channel CurrentMeasure. The digital filtering gives the possibility to get a higher precision and to react fast on changes of the measured values. The filter is not used during a voltage ramp. The filter is restarted after a significant change of the signal.

Factory settings: 64

3.5.2.29 ChannelNumber (module read access)

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1208				
HV board write access	0	0x1208	ChannelNumb	per		
Notes: ChannelNumber	DATA_0 to DA	TA_3 UI4				

3.5.2.30 ArticleDescription (module read access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_5	DATA_4	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1209						
HV board write access	0	0x1209	ArticleDesc	ription				
Notes: ArticleDescription	DATA_0	to DATA_3	UI4					

This register returns the module article description. Depending on the length of the article description, multiple CAN messages may be sent. The description is terminated by a zero character.

3.5.2.31 ModuleOption (module read access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1280				
HV board write access	0	0x1280	ModuleOption	1		
Notes: ModuleOption DATA_0 t	to DATA_3	UI4				

The requested value of the module option is not valid when all bits are set to '1'!

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
EDCP	Reserved	Reserved	Reserved	Reserved	HVBPM	CLIM	VLIM
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
INHIBIT	RELAY	FAST RAMP	SAFETY LOOP ACTIVE	BLOCK KILL ENABLE	BLOCK EMERGENCY	INHIBIT DOWN	INHIBIT NEGATED
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Bit15 Reserved	Bit14 Reserved	Bit13 Reserved	Reserved	Bit11 Reserved	Bit10 Reserved	Reserved	Reserved

BIT	OPTION	DESCRIPTION /SPECIFICATION
Bit31	EDCP	Device use the iseg Enhanced Device Control Protocol
Bit26	HVBM	HV boards per (CAN nodes) module
Bit25	CLIM	hardware current limit
Bit24	VLIM	hardware voltage limit
Bit23	INHIBIT	external INHIBIT signals will be monitored, option IU, ID, NIU and NID in combination with Bit17, INHIBIT DOWN and bit 16, INHIBIT INVERSE
Bit22	RELAY	discharge relay
Bit21	FAST RAMP	fast ramp
Bit20	SAFETY LOOP ACTIVE	Opened the safety loop active by the module, option SLA
Bit19	BLOCK KILL ENABLE	Blocked any try to set kill enable bit
Bit18	BLOCK EMERGENCY	Blocked any try to switch on the emergency bit
Bit17	INHIBIT DOWN	Configure pull down resistors on the inhibit inputs lines
Bit16	INHIBIT NEGATED	Negate handling of the INHIBIT signals
Bit06	IEEE 488	Implements an IEEE 488 compatible interface
Bit05	PLC	Implements an interface to connect a PLC (Programmable Logic Control)
Bit04	AIO	Implements an Analog I/O interface
Bit03	USB	Implements an USB interface
Bit02	ETH	Implements an Ethernet interface
Bit01	RS232	Implements a RS232 interface
Bit00	CAN	Implements a CAN interface

Table 19

3.5.2.32 ModuleOptionSpec (module read access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_4	DATA_3	DATA_2	DATA_1	DATA_0
master read-	1	0x1290	DATA_4	DATA_3	DATA_2	DATA_1	
HV board write access	0	0x1290	ModuleOptic	n			Spec
Notes: ModuleOption	DATA_1 to DA	TA_4	UI4				
Specfication	DATA_0		UI1				

The requested value of the module option specification is not valid or do not exist when all bits are set to '1' or '0'!

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Enhanced Device Control Protocol	_	_	_	_	HV boards per (CAN nodes) module	Current limit	Voltage limit
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
INHIBIT	RELAY	Fast RAMP	-	-	-	_	-
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
-	-	-	-	-	-	_	_
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
-	-	-	-	-	-	-	-

To request a specification the corresponding bit of the module option word has to be set to '1'.

Specification: fast ramp 1 25% of VoltageNominal

2 50% of VoltageNominal

3 75% of VoltageNominal

3.5.2.33 ModuleCommMode (module write access)

Access	DATA_DIR	DATA_ID	DATA_1	DATA_0
HV board write access	0	0x12a0	ModuleCommMode	
Notes: ModuleOption	DAT	A_0 to DATA_3	UI2	

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved							
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Reserved							
51.45							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08

Bit		Level	Description
Bit0	FAST	1	Fast communication mode (supported from isegHVOPCServer, isegCANHVControl)
		0	common mode

3.5.3 EDCP Group Accesses

The Multi Channel CAN module offers an extended and flexible range of group functions. There exist both predefined (so called fix) groups and variable groups.

Each group definition consists of 2 words each of 16 bits. In fix groups these 2 words are the value to be set into all channels (in float format) or they are a logical information. In variable groups one word carries the information about type and characteristics of the goup, the other word carries the information about the members of the group or gives an overview about a selected situation in all channels.

Four different grouptypes for variable groups have been established:

- Set group
- Status group
- Monitoring group
- Trip group

3.5.3.1 SetGroup

Set groups will be used in order to set channels to a same value, which happen to carry the identical channel value. Therefore within the group following will be defined:

Member of the group: Channel members acts for the control set bit of the master channel.

Type of the group: Set group type TypeSet.

• Channel characteristics: Coding of characteristics, which have to be set commonly.

Control mode: Divides between a one-time setting of the slave channel property and a permanently

copying of the Master channel's property to the slave channels.

• Master channel: Number of the channel, which characteristics will be transferred to the other channels. Is

just necessary for Set groups which set a value.

If functions have to be initialized e.g. start of ramp then there is no Master channel.

EDCP frame:

Access		DATA_DIR	DATA_ID	NBR		OFFSET	DATA_5	DATA_2	DATA_1	DATA_0
master group write	•	0	0x2000	Nx		Ox	MembersSe	t	TypeSet	
master group read-	-	1	0x2000	Nx		Ox				
HV board write acco	ess	0	0x2000	Nx		Ox	MembersSe	t	TypeSet	
Notes:										
Nx	Group	number			0 31				UI1	
Ox	Chanr	nel member d	offset		0, 16, 3	32 too acc	ess up to 255	channels	UI1	
MembersSet	Chanr	nel members	setting		memb	ers 0x0000	01 0xFFFFFF	=	UI4	
TypeSet	Settin	g type							UI2	

MembersSet:

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved							
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	CH3	CH2	CH1	СН0

TypeSet:

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
TYPE1	TYPE0	res	res	res	res	res	MOD0
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Bit07 SET3	Bit06 SET2	SET1	Bit04 SET0	Bit03 MCH3	MCH2	Bit01 MCH1	Bit00 MCH0

Channel members:

MembersSet	Value	
CH23, CH22, CH0	0x000001 0xFFFFFF	The HV channels which can be configured here as members will follow a setting type defined by the bits SET0 to SET3 for the master channel defined by the bits MCH0 to MCH3.

Group type:

TYPE1	TYPE0	Value	
0	0	SetGroupType	Group is defined as Set group

Mode:

MOD0	Value	
0	0	The group function is done one time
1	1	The group function is done permanently

Setting type:

SET3	SET2	SET1	SET0	Value	
0	0	0	1	SetVset	Copy Vset from MCH to all members
0	0	1	0	SetIset	Copy Iset from MCH to all members
0	1	0	0	SetVbnds	Copy Vbounds from MCH to all members
0	1	0	1	SetIbnds	Copy Ibounds from MCH to all members
1	0	1	0	SetOn	Switch ON/OFF all members depending on setON in MCH
1	0	1	1	SetEmrgCutOff	Switch OFF all members (Emergeny OFF)
1	1	1	1	Cloning	Set all properties of members like MCH properties (in preparation)

Master channel:

МСНЗ	MCH2	MCH1	МСН0	Value	
0	0	0	0	0	1: Channel 0 is MasterChannel MCH
0	0	0	1	1	1: Channel 1 is MasterChannel MCH
1	1	1	1	15	1: Channel 15 ist MasterChannel MCH

3.5.3.2 StatusGroup

Status groups are used to report the status of a single characteristic of all channels simultaneously. No action is foreseen. Therefore within the group following has to be defined:

• Members of the group: Channel members of a specific channel status bit

• Type of the group: Status group type TypeStatus

• Channel characteristics: Coding of characteristics which is to be reported.

EDCP frame:

Access		DATA_DIR	DATA_ID	NBR	OFFSET	DATA_5	DATA_2	DATA_1	DATA_0
master group writ	:e	0	0x2000	Nx	Ox	Members	Status	TypeStatu	S
master group read	d-	1	0x2000	Nx	Ox				
HV board write ac	cess	0	0x2000	Nx	Ox	Members	Status	TypeStatu	S
Notes:									
Nx	Grou	p number		C	31			UI1	
Ox	Chan	nel member	offset	C), 16, 32 too ac	cess up to 25	5 channels	UI1	
MembersStatus	Chan	nel members	status	r	nembers 0x0000	00 0xFFFFF	F	UI4	
TypeStatus	Statu	s type						UI2	

MemberStatus:

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved							
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО

TypeStatus:

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
TYPE1	TYPE0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
D:+07	51.00	D': 05	D': 0.4	D': 00	D:+00	D:+04	D': 00
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
STAT3	STAT2	STAT1		Reserved	Reserved	Reserved	Reserved

Channel members:

MembersStatus	Value	
CH23, CH22, CH0		Combine HV channels which are in status defined by the bits SET[3 \dots 0] for the master channel defined by the bits MCH0[3 \dots 0].

Group type:

TYPE1	TYPE0	Value	
0	1	StatusGroupType	Group will be defined as Status group

Status type:

STAT3	STAT2	STAT1	STAT0	Value			
0	0	1	1	ChklsOn	check channel Status.isON (is on)		
0	1	0	0	ChklsRamping	check channel Status.isRAMP (is ramping)		
0	1	1	0	ChklsConstantCurrent	check channel Status.isCC (is current control)		
0	1	1	1	ChklsConstantVoltage	check channel Status.isCV (is voltage control)		
1	0	1	0	ChklsCurrentBounds	check channel Status.isCBNDs (is current bounds)		
1	0	1	1	ChklsVoltageBounds	check channel Status.isVBNDs (is voltage bounds)		
1	1	0	0	ChklsExternalInhibit	check channel Status.isEINH (is external inhibit)		
1	1	0	1	ChklsTrip	check channel Status.isTRIP(is trip)		
1	1	1	0	ChklsCurrentLimit	check channel Status.isCLIM (is current limit exceeded)		
1	1	1	1	ChklsVoltageLimit	check channel Status.isVLIM (is voltage limit exceeded)		

3.5.3.3 MonitoringGroup

Monitoring groups are used to observe a single characteristic of selected channels simultaneously and in case of need take action. Therefore the group has to be defined:

• Members of the group: Channel members acts for the configured status monitor bit.

• Type of the group: Monitoring group type TypeMon

• Channel characteristics: Coding of characteristics which is to be monitored.

• Control mode: Coding of the control function, i.e. which kind of change in the group-image shall cause a

signal.

• Activity: Define which activity has to happen after the event.

EDCP frame:

Access	DATA_DIR	DATA_ID	NBR	OFFSET	DATA_5	DATA_2	DATA_1	DATA_0
master group write	0	0x2000	Nx	Ox	MembersN	lonitoring	TypeMonit	oring
master group read-	1	0x2000	Nx	Ox				
HV board write access	0	0x2000	Nx	Ox	MembersN	lonitoring	TypeMonit	oring
Notes:								
Nx	Group n	umber		0 31				UI1
Ox	Channel	member of	fset	0, 16, 32 too access up to 255 channels				UI1
MembersMonitoring UI4	Channel monitoring members				0	×000001 0x	FFFFF	
TypeMonitoring	Monitori	ng type						UI2

ChannelMonitoringList:

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved							
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СН0

Type Monitoring:

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
TYPE1	TYPE0	ACT1	ACT0	res	res	res	MOD0
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
MON3	MON2	MON1	MON0	Reserved	Reserved	Reserved	Reserved

Channel members:

MembersMonitoring	Value	
CH23, CH22, CH0		Combine HV channels which monitor the status bits configured in bit MON[3 0] and acts to the action configured by the bits ACT[1 0].

Group type:

TYPE1	TYPE0	Value	Description
1	0	MonitoringGroupType	Group will be defined as Monitoring group

Monitoring action:

ACT1	ACT0	Value	Description
0	0	0	No special action ; EventGroupStatus[grp] will be set
0	1	1	Ramp down of group EventGroupStatus[grp] will be set
1	0	2	Shut down group without ramp; EventGroupStatus[grp] will be set
1	1	3	Shut down module without ramp; EventGroupStatus[grp] will be set

Mode:

MOD0	Value	Description
0	0	event will happen if at least one Channel == 0
1	1	event will happen if at least one Channel == 1

Monitor type:

MON3	MON2	MON1	MON0	Value	Description		
0	0	1	1	MonitorIsOn	monitor channel Status.isON (is on)		
0	1	0	0	MonitorIsRamping	monitor channel Status.isRAMP (is ramping)		
0	1	1	0	MonitorlsConstantCurrent	monitor channel Status.isCC (is Constant Current)		
0	1	1	1	MonitorIsConstantVoltage	monitor channel Status.isCV (is Constant Voltage)		
1	0	1	0	MonitorIsCurrentBounds	monitor channel Status.isCBNDs (is Current Bounds)		
1	0	1	1	MonitorIsVoltageBounds	monitor channel Status.isVBNDs (is Voltage Bounds)		
1	1	0	0	MonitorIsExternalInhibit	monitor channel Status.isEINH (is External Inhibit)		
1	1	0	1	MonitorIsTrip	monitor channel Status.isTRIP (is Trip)		
1	1	1	0	MonitorIsCurrentLimit	monitor channel Status.isCLIM (is Current Limit exceeded.)		
1	1	1	1	MonitorIsVoltageLimit	monitor channel Status.isVLIM (is Voltage Limit exceeded.)		

3.5.3.4 DelayedTripGroup

Trip timeout groups are necessary to keep the timing for the time controlled delayed Trip function and to define the action which has to happen after a Trip.

Therefore in the group following will be defined:

Members of the group: Channel members acts to the configured action when constant current state is active

longer than the trip time out is configured.

• Type of the group: Group time out type

Activity: Define which activity has to happen after time controlled Trip

• Timeout: Coding of Timeout-time as integer value.

Timeout groups have to stay unchanged for the whole time as long they are used.

An overwriting will cause the definition of a new group. An overlay of the channels of multiple Trip groups is not allowed.

EDCP frame:

Access	DATA_DIR	DATA_ID	NBR	OFFSET	DATA_5	DATA_2	DATA_1	DATA_0
master group write	0	0x2000	Nx	Ox	MembersT	MembersTripTimout		me
master group read-	1	0x2000	Nx	Ox				
HV board write access	0	0x2000	Nx	Ox	MembersT	ripTimout	TypeTripTi	me
Notes:								
Nx	Group n	umber		0 31				UI1
Ox	Channel	member of	fset	0, 16, 32 too access up to 255 channels				UI1
MembersTripTimout UI4	Channel trip timout members 02					(000001 0x	FFFFF	
TypeTime UI2		Type time	out					

MembersTripTimout:

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Reserved							
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СН0

TypeTripTime:

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
TYPE1	TYPE0	ACT1	ACT0	TOT11	TOT10	ТОТ9	тот8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Bit07 TOT7	Bit06 TOT6	Bit05 TOT5	Bit04 TOT4	Bit03 TOT3	Bit02 TOT2	Bit01 TOT1	Bit00 TOT0

Channel members:

MembersMonitoring	Value	
CH23, CH22, CH0	0x000000 0xFFFFFF	The configured HV channels will be tripped when one of it is in status constant current longer than the time out configured in TOT[11 0].

Group type:

TYPE1	TYPE0	Value	
1	1	TimeOutGroupType	Group will be defined as Timeout group

Trip timeout action:

ACT1	ACT0	Action	
0	0	0	No special action; EventGroupStatus[grp] will be set.
0	1	1	Ramp down group with ramp; EventGroupStatus[grp] will be set
1	0	2	Shut down the group without ramp; EventGroupStatus[grp] will be set
1	1	3	Shut down the module without ramp; EventGroupStatus[grp] will be set

INFORMATION

TOT[11 ... 0]

Timeout-time in ms (8 ... 4088 ms) resolution is 8 ms (different values to 8 ms resolution will be rounded)

3.5.3.5 Request Temperatures and Supplies (group write access)

Message	DLC	DataID	Channel	Data	Data	Data	Data	Value
Request all Temperatures	2	20 01						
Temperature 0	7	20 01	00	41	EF	0D	В0	29.9 °C
Temperature 1	7	20 01	01	41	ED	66	30	29.7 °C
Temperature 2	7	20 01	02	41	EF	0D	В0	29.9 °C
Request all Measured Supplies	2	20 02						
Positive supply external +24	7	20 02	00	41	BE	75	98	23,8 V
Negative supply external -24	7	20 02	01	C1	C0	00	00	-24 V
Logic supply external +5	7	20 02	02	40	A0	51	EC	5,01 V
Positive supply op-amp	7	20 02	03	41	40	00	00	12
Negative supply op-amp	7	20 02	04	C1	40	00	00	-12
Logic intern +5	7	20 02	05	40	A0	51	EC	4.99 V
Ligic intern +3.3	7	20 02	06	40	53	2E	1C	3.29 V
Reserved	7	20 02	07	00	00	00	00	0 (res)
Reserved	7	20 02	08	00	00	00	00	0 (res)

Table 20: Request Temperatures and Supplies

3.5.3.6 GroupVoltageLimit – OPTION (module read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_4	DATA_3	DATA_2	DATA_1	DATA_0
master read -	1	0x2005					
HV board write access	0	0x2005	Channel	VoltageMax			
Notes: HardwareVoltageLimit VoltageMax Channel	DAT	A_0 to DATA_3 [%]	R4			

3.5.3.7 GroupCurrentLimit – OPTION (module read-write access)

Access	DATA_DIR	DATA_ID	DATA_4	DATA_3	DATA_2	DATA_1	DATA_0
master read -	1	0x2006					
HV board write access	0	0x2006	Channel	CurrentMax			
Notes: HardwareVoltageLimit CurrentMax Channel	DAT	A_0 to DATA_3 [%]	R4			

3.5.3.8 VoltageSetAllChannels (group write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x2100	VoltageSetAllC	Channels		
Notes: VoltageSetAllChannels	DATA_0	to DATA_3 [A]		R4		

(see 3.5.1.14 Set current / trip (single write- and single/ multiple single read-write access) Single access also)

3.5.3.9 Current-Trip/Set-AllChannels (group write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master write access	0	0x2101	CurrentSetAll	Channels		
Notes: CurrentSetAllChannels	DATA 0	to DATA 3 [A]		R4		
CurrentSetAllChannels	DATA_0	to DATA_3 [A]		R4		

(see 3.5.1.14 Set current / trip (single write- and single/ multiple single read-write access) Single access also)

3.5.3.10 SetOnOffAllChannels (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master group write	naster group write 0 0x2200 SetOnOffAllChs					
master group read- 1 0x2200						
HV board write access	0	0x2200	SetOnOffAllCh	ns		
Notes: SetOnOffAllChs DATA_0 to DATA_3 for c SetOnOffAllChs DATA_2 to DATA_3 for c		•			noment) UI4 UI2	

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00

SetOnOffAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel ON CHm = 0 Channel OFF

The SetOnOffAllChs represents a 32 bit field to control the channel property setON for each channel member of the bit field with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to setON for all channel members simultaneously with on instruction.

3.5.3.11 SetEmergencyAllChannels (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master group write	0	0x2201	SetEmergency	AllChs		
master group read-	1	0x2201				
HV board write access	0	0x2201	SetEmergency	AllChs		
Notes: SetEmergencyAllChs SetEmergencyAllChs	DATA_0 to DATA_3 for channel 0 to 31 (channel 16 to 31 are reserved at the moment) DATA_2 to DATA_3 for channel 16 to channel 31 (reserved at the moment)				nt) UI4 UI2	

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

SetEmergencyAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel EMERGENCY set
CHm = 0 Channel EMERGENCY reset

The 'SetEmergencyAllChs' represents a 32 bit field to control the channel property 'setEMCY' for each channel member of the bit field with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to 'setEMCY' for all channel members simultaneously with on instruction.

3.5.3.12 EventStatusVoltageLimitAllChannels (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master group write	0	0x2202	EventStatusVl	imitAllChs		
master group read-	1	0x2202				
HV board write access	0	0x2202	EventStatusVl	imitAllChs		
Notes: EventStatusVLimitAllChs EventStatusVLimitAllChs						nt) UI4 UI2

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00

EventStatusVLimitAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel event status voltage limit

CHm = 0 nothing

The 'EventStatus VLimitAIIChs' represents a 32 bit field to control the channel property' EVLIM' for each channel with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to reset 'EVLIM' for all channel members simultaneously with on instruction.

If the voltage limit was exceeded or an external over voltage occurs at the channel output (i.e. Output voltage → Set voltage) then the channel will be switched off and the according bit will be set. The error bits will be canceled and the voltage of the corresponding channel can be switched on again only after writing 'EventStatusVLimitAllChs' with the bits, which are corresponding to the channel errors are set to "1".

3.5.3.13 EventStatusCurrentLimitAllChannels (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0
master group write	0	0x2203	EventStatusCL	imitAllChs		
master group read-	1	0x2203				
HV board write access	0	0x2203	EventStatusCL	imitAllChs		
Notes: EventStatusCLimitAllChs EventStatusCLimitAllChs DATA_0 to DATA_3 for channel 0 to 31 (channel 16 to 31 are reserved at the moment) UI4 EventStatusCLimitAllChs DATA_2 to DATA_3 for channel 16 to channel 31 (reserved at the moment) UI2						

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00

EventStatusCLimitAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel event status current limit

CHm = 0 nothing

The EventStatusCLimitAllChs represents a 32 bit field to control the channel property ECLIM for each channel with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to reset ECLIM for all channel members simultaneously with on instruction.

The module responds to the exceeding of the hardware current limit which has been set in the channel in dependence on the according setKILena bit of module control as follows:

- setKILena = 1: Voltage will be switched off permanently without ramp, green LED on front panel is off until a write of ´EventStatusCLimitAllChs´ with the bits, which are corresponding to the channel errors set to "1". The error bits will be cancelled and the voltage of the corresponding channels can be switched on again.
- setKILena = 0: HV modules without a current control E16D0, E16D1 and E08B0 will be switched off voltage without ramp, green LED on front panel is off. If the output voltage arrives at 0 V the ramping to set voltage will be started automatically again. The green LED again flash only after writing the 'EventStatusCLimitAIIChs' with the respective bits.

HV modules with a current control will not switch off high voltage and operate in constant current mode, green LED on front panel is off. The output current will be limited. The green LED flashes only after writing of EventStatusCLimitAllChs with the respective bits and removing of the limitation of current before.

3.5.3.14 EventStatusCurrentTripAllChannels (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0	
master group write	0	0x2204	EventStatusTr	pAllChs			
master group read-	1	0x2204					
HV board write access	0	0x2204	EventStatusTr	pAllChs			
Notes: EventStatusTrpAllChs EventStatusTrpAllChs	• • • • • • • • • • • • • • • • • • • •						

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

EventStatusTrpAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel event status trip

CHm = 0 notihing

The 'EventStatusTrpAllChs' represents a 32 bit field to control the channel property ETRP for each channel with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to reset ETRP for all channel members simultaneously with on instruction.

If the output current exceeds the programmed current trip value then the corresponding bits will be set:

- setKILena = 1: Voltage will be switched off permanently without ramp, green LED on front panel is off until a write of 'EventStatusTrpAIIChs' with the bits, which are corresponding to the channel errors set to "1". The error bits will be cancelled and the voltage of the corresponding channels can be switched on again.
- setKILena = 0: HV will not be switched but the green LED on front panel is off. The output current will be limited if there is a current control. The green LED flashes only after writing of 'EventStatusTrpAllChs' with the respective bits and removing of the limitation of current before.

3.5.3.15 EventStatusExternalInhibitAllChannels (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0	
master group write	0	0x2205	EventStatusInl	hAllChs			
master group read-	1	0x2205					
HV board write access	0	0x2205	EventStatusInl	hAllChs			
Notes: EventStatusInhAllChs DATA_0 to DATA_3 for channel 0 to 31 (channel 16 to 31 are reserved at the moment) UI4 EventStatusInhAllChs DATA_2 to DATA_3 for channel 16 to channel 31 (reserved at the moment) UI2							

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

EventStatusInhAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel event status inhibit

CHm = 0 notihing

The 'EventStatusInhAllChs' represents a 32 bit field to control the channel property ETRP for each channel with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to reset ETRP for all channel members simultaneously with on instruction.

Voltage will be switched off permanently without ramp, if the INHIBIT is active, the green LED on front panel is off. When the INHIBIT is going back from active to passive state then the INHIBIT flag have to be erased by write of the

EventStαtusInhAIIChs´ before the voltage can be switched on again. The INHIBIT flags are reset with set of the corresponding channel bit to "1".

3.5.3.16 Set ON / OFF channels extender (group write- / read-write access)

EDCP frame:

Access	DATA_DIR	DATA_ID	DATA_3	DATA_2	DATA_1	DATA_0	
master group write	0	0x2280	SetOnOffChsExtender				
master group read-	1	0x2280					
HV board write access	0	0x2280	SetOnOffChsExtender				
Notes: SetOnOffAllChs DATA_0 SetOnOffAllChs DATA_2	noment) UI4 UI2						

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH63	CH62	CH61	CH60	CH59	CH58	CH57	CH56
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH55	CH54	CH53	CH52	CH51	CH50	CH49	CH48
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH47	CH46	CH45	CH44	CH43	CH42	CH41	CH40
Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
CH39	CH38	CH37	CH36	CH36	CH34	CH33	CH32

SetOnOffAllChs DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel ON CHm = 0 Channel OFF

The 'SetOnOffChsExtender' represents a 32 bit field to control the channel property 'setON' for each channel member of the bit field with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to 'setON' for all channel members simultaneously with on instruction.

3.5.3.17 Set EMERGENCY channels extender (group write- / read-write access)

EDCP frame:

Access	DATA DIR	DATA ID	DATA 3	DATA 2	DATA 1	DATA 0	
master group write	0	0x2201	SetEmergency	_	2A.IA	J.(()_0	
master group read-	1	0x2201					
HV board write access	0	0x2201	SetEmergencyChsExtender				
Notes: SetEmergencyChsExtender SetEmergencyChsExtender		3 for channel 0 to 3 3 for channel 16 to	•			nt) UI4	

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
CH63	CH62	CH61	CH60	CH59	CH58	CH57	CH56
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
CH55	CH54	CH53	CH52	CH51	CH50	CH49	CH48
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
CH47	CH46	CH45	CH44	CH43	CH42	CH41	CH40
CH47 Bit07	CH46 Bit06	CH45 Bit05	CH44 Bit04	CH43 Bit03	CH42 Bit02	CH41 Bit01	CH40

SetEmergencyChsExtender DATA_0 to DATA_1 for channel 0 to channel 15 UI2

CHm = 1 Channel EMERGENCY set
CHm = 0 Channel EMERGENCY reset

The 'SetEmergencyChsExtender' represents a 32 bit field to control the channel property 'setEMCY' for each channel member of the bit field with one bit in the bit-field. The data point is one of the EDCP group functions with advantage to 'setON' for all channel members simultaneously with on instruction.

3.5.4 Important DCP Module Accesses

3.5.4.1 GeneralStatus (group write- / read-write / active access)

DCP frame:

Access	EXT_INSTR	DATA_DIR	DATA_ID	DATA_1	DATA_0
HV board active access	0	0	0xc0	GeneralStatus	Details
Notes: GeneralStatus DATA_1 UI1					

b15	b14	b13	b12	b11	b10	b9	b8
Save	KILLena/ HwVLnotLow	SPLYTMPgd	AvAd	Stbl	SFLPgd	noRamp	noSumErr
b7	b6	b5	b4	b3	b2	b1	b0
INHB	BordTemp	res	res	VLIM	CLIM	RERR	TRP

Details DATA_0 UI1

GeneralStatus:

Bit	Name	Description
Save	Save	save function bit stored permanently the current set values (takes some seconds ca. 10s)
KILLena	KillEnable	kill function bit
HwVLnotLow	HardwareVoltageLimitNotLow	hardware voltage limit is not to low bit, for device class 21 only
SPLYTMPgd	SupplyGoodTemperatureGood	supply good and board temperature good bit
AvAd	AverageAdjust	average and fine adjustment bit
SFLPgd	SaftyLoop	safety loop bit
noRamp	noRamp	flag to display that no voltage is ramping
noSumErr	NoSumError	displays that there has been built a sum error flag by VLIM&ILIM&TRP over all channels

Details:

Bit	Name	Description
INHB	Inhibit	an external INHIBIT at least one of the channels (device class 25)
BoardTemp	BoardTemperatureGood	board temperature is good
VLIM	VoltageLimit	hardware voltage limit has been exceeded
CLIM	CurrentLimit	hardware current limit has been exceeded
RERR	RegulationError	regulation error, for device class 21 only
TRP	Trip	voltage or current trip
res	reserved	

Bit	Description
Save=0	no write access to EEPROM
Save=1	store all set values to EEPROM (time to save ca. 10s) for device classes 24 and 25 only
KILLena=0	kill function disable
KILLena = 1	kill function enable, for device classes 21 only
HwVLnotLow = 0	HW Vlimit voltage limit is to low, it is not possible to switch on the HV, reset by write with HwVLToLow flag is set to "1"
HwVLnotLow = 1	HW Vlimit in proper range
SPLYTMPgd = 0	supply voltages are out of range or module temperature > 55°C
SPLYTMPgd = 1	supply voltages are in range and module temperature ≤ 55°C
AvAd = 0	fine adjustment and average of voltage, current measurement OFF
AvAd = 1	fine adjustment and average of voltage, currentmeasurement ON
Stbl = 0	all channels are stable with program ADC filter frequency fN. (ADC conversion time =1/fN, see 'Set ADC filter frequency', default fN=50 Hz)
Stbl = 1	at least one channel is ramping Vo or not yet stable after ramping (ramping - with ADC filter frequency fN=100 Hz)
SFLPgd = 0	safety loop is broken -VO bas been shut off, reset by a write of the 'General status' with sloop flag is set to "1"
SFLPgd = 1	safety loop is closed
noRamp = 0	VO is ramping in at least one channel
noRamp = 1	no channel is ramping
noSumErr = 0	voltage limit, current limit or trip has been exceeded in at least one of the channels (error)
noSumErr = 1	status channel flags v & c & t = 0 for all channels (no errors)
INHB = 0	no external INHIBIT signal
INHB = 1	external INHIBIT signal
BoardTemp = 0	temperature ≤ 55°C
BoardTemp = 1	temperature > 55°C
VLIM=0	hardware voltage limit hasn't been exceeded
VLIM=1	hardware voltage limit has been exceeded
CLIM=0	hardware current limit hasn't been exceeded
CLIM=1	hardware current limit has been exceeded
RERR=0	hardware current hasn't been exceeded
RERR=1	voltage has been exceeded
TRP=0	no trip
TRP=1	voltage or current trip

Table 21

If one of the bits 'noHwVLtoLow', 'SPLYTMPgd', 'SFLPgd', 'noSumErr' in the modul access "General status module" has not been set, the module will send this access as an active error message with higher priority (ID9=0). An additional 2nd data byte offers more information about the NoSumError flag of the first byte.

Example of an active error message

access	identifier	length code	DATA_ID	DATA_1	DATA_0
HV board active access	0x180	3	0xc0	0x57	0x01

TRP=1 noSumErr=0 etc. (3.5.4.1 General Status)

3.5.4.2 Log-on / Log-off Front-end device at superior layer (module active- / write access)

DCP frame:

Access	DATA_D	IR	DATA_ID	DATA_1	DATA_0
HV board active acce	ss 1		0xD8	GeneralStatus	DeviceClass
master write access	0		0xD8	LogOnOff	
	ATA_1 ATA_0	UI1 UI1	refer chapter 3.5.4.1 Genera	ıl Status	

device	class	label	firmware	description	associated
EDCP	DCP				serial numbers
21	0	EDS	E16D0_xxx E16D1_xxx E24D1_xxx	EDS 16 channels per PCB EDS 16 channels per PCB EDS 24 channels per PCB	471xxx / 71xxxx
22	-	HPS / LPS	H101C0_5xx	HPS 19", 1 channel HV Power Supply (300W, 800W)	68xxxx / 70xxxx
23	-	HPS / LPS	H201C0_2xx	HPS compact,1 channel HV Power Supply (350W)	68xxxx / 70xxxx
24 24 25 25	6 6 7 7	EHS/EMS/ELS	E08C0_xxx	ExS 8 channel per PCB, standard common GND	73xxxx 73xxxx 74xxxx 74xxxx
25	7	EHS/EMS/ELS	E08F0_xxx	ExS 8 channel per PCB, standard, floating GND	474xxx
26	2	EHS/EMS/ELS	E08F2_xxx	ExS 8 channel per PCB, floating GND 2 ranges for measurement of current	72xxxx 72xxxxx
27	-	EHS/EMS/ELS	E08C2_xxx	ExS 8 channel per PCB, common floating GND 2 ranges for measurement of current	78xxxx 78xxxxx
41	-	MICC	MICC_3xx	MICC Multichannel Interface Crate Controller for MMC Crates	458xxx
42	-	MICP	MICP_3xx	MICP Multichannel Interface Crate PHQ Controller for MMC Crates	458xxx
60	-	HPS	H101C1_1xx	HPS 19", 1 channel HV Power Supply (1.5kW – 10 kW)	90xxxxx
70	-	EHS	E16C1_1xx	ExS 16 channels per PCB or 32 channels per module	79xxxx 79xxxxx

Table 22

LogOnOff DATA_1=1 superior layer send a "Log-on" at Front-end device to registration UI1

DATA_1=0 superior layer send "Log-off" to Front-end device

xxx and xxxx are running numbers

After POWER ON the Front-end device - up to a number of two per module - will give this module access cyclically on the bus (ca. 1 sec). If a controller of superior layer identifies this access then it is possible to register this as a Front-end device and is possible to address it with FE_ADR. (see also description 11bit-Identifier)

After the successful registration the Front-end device will not send further 'Log-on" accesses as long as:

- it receives accesses from the external CAN Bus in periods shorter than one minute or
- until the superior controller will send a 'Log-off' access to the Front-end device.

3.5.5 Events

The module provides an extended event collecting logic. This is necessary to monitor extraordinary events and forward them to the host.

3.5.5.1 Channel events

These event-bits in the channel event status register are related to mask bits in the channel event mask register. With help of an AND function (bit-wise) between an event bit and the according mask bit a result only occurs where the mask bit has been set. A following logic OR function of all of these results leads to the event status of the channels.

see 3.5.2.9 ModuleEventChannelStatus (module write- / read-write access)

ModuleEventChannelStatus[ch] = (ChannelEventStatus.EVLIM[ch] AND ChannelEventMask.MEVLIM[ch]) OR (ChannelEventStatus.ECLIM[ch] AND ChannelEventMask.MECLIM[ch]) OR (ChannelEventStatus.ETRP[ch] AND ChannelEventMask.METRP[ch]) OR (ChannelEventStatus.EEINH[ch] AND ChannelEventMask.MEEINH[ch]) OR (ChannelEventStatus.EVBNDs[ch] AND ChannelEventMask.MEVBNDs[ch]) OR (ChannelEventStatus.ECBNDs[ch] AND ChannelEventMask.MECBNDs[ch]) OR (ChannelEventStatus.ECV[ch] AND ChannelEventMask.MECV[ch]) OR (ChannelEventStatus.ECC[ch] AND ChannelEventMask.MECC[ch]) OR (ChannelEventStatus.EEMCY[ch] AND ChannelEventMask.MEEMCY[ch]) OR (ChannelEventStatus.EEOR[ch] AND ChannelEventMask.MEEOR[ch]) OR (ChannelEventStatus.EOn2Off[ch] AND ChannelEventMask.MEOn2Off [ch]) OR (ChannelEventStatus.EIER[ch] AND ChannelEventMask.MEIER[ch]) ch={0..n}

The status of all channel events is collected in the register EventChannelStatus of the module items.

For a selection or filtering of the channel events a related mask register has been provided (3.5.2.11 ModuleEventChannelMask (module write- / read-write access)). With help of the AND or OR function (see channel) the event active signal of the channels EventChannelActive will be generated:

EventChannelActive

= (EventChannelStatus[0] AND EventChannelMask[0]) OR (EventChannelStatus[1] AND EventChannelMask[1]) OR

(EventChannelStatus[n] AND EventChannelMask[n])

3.5.5.2 Group events (in preparation)

Like written before groups are also able to generate Events. These events will be collected in the status word EventGroupStatus of the GroupData. With help of the mask register EventGroupMask the event active signal of the groups EventGroupActive will be generated.

EventGroupActive = (EventGroupStatus[0] AND EventGroupMask[0]) OR

(EventGroupStatus[1] AND EventGroupMask[1]) OR

•••

(EventGroupStatus[23] AND EventGroupMask[24])

3.5.5.3 Module events

With help of the NOT, AND or OR function the event active signal of the module EventModuleActive will be generated:

EventModuleActive = (NOT(ModuleEventStatus.ETMPngd) AND ChannelEventMask.METMPngd) OR

(NOT(ModuleEventStatus.ESPLYngd) AND ChannelEventMask.MESPLYngd) OR (NOT(ModuleEventStatus.ESFLPngd) AND ModuleEventMask.MESFLPngd) OR

From both signals EventChannelActive and EventModuleActive the global event active signal of the module IsEventActive of the ModuleStatus register will be generated.

IsEventActive = (EventChannelActive OR EventGroupActive OR EventModuleActive

This global signal 'IsEventActive' triggers a fast message on the CAN bus with the DCP Module frame of General status.

Example to generate fast error messages:

The event flag ECC of the ChannelEventStatus for channel 2 or the event flag EventTemperatureNotGood of the ModuleEventStatus should release a fast CAN frame:

- Channel[2].ChannelEventMask.Bit.MECC = 1
- Module.EventChannelMask.Bit.2 = 1
- Module.EventMask.Bit.METMPngd = 1

The signal is Evnt Active is triggered and releases a fast CAN frame of General status when:

(Channel[2].ChannelEventStatus.Bit.ECC & Channel[2].ChannelEventMask.Bit.MECC & Module.ModuleEventChannelMask.Bit2

Module.ModuleEventStatus.Bit.ETMPngd & Module.ModuleEventMask.Bit.METMPngd

 $(Module.ModuleEventChannelStatus.Bit2\ \&\ Module.ModuleEventChannelMask.Bit2\)$

Fast CAN frame in case of Channel[2].ChannelEventStatus.Bit.ECC == 1:

0x190 3 0xc0 0x37 0x00 (ID=0x190, ID9=0; Len=3; DATA_ID=0xc0; Data=0x3700)

 $(Channel[2].ChannelEventStatus.Bit.ECC \& Channel[2].ChannelEventMask.Bit.MECC) == 1 \\ \color{red} \rightarrow ModuleEventChannelStatus.Bit.2= 1 \\ \color{red} \rightarrow ModuleEventCha$

Fast CAN frame in case of Module.ModuleEventStatus.Bit. ETMPngd == 1:

0x190 3 0xc0 0x17 0x40 (ID=0x190, ID9=0; Len=3; DATA_ID=0xc0; Data= 0x1740)

INFORMATION

 $Please \ note \ that, \ a \ release \ of \ a \ fast \ CAN \ frame \ is \ different \ in \ handling \ depending \ on \ EDCP \ or \ DCP \ mode!$

4 Appendix

4.1 A - Shortcuts

BCD binary coded decimal format

CAN controller area network

Chm channel m = 0 ... 47

CHN channel

DCP device control protocol
DATA_ID data identifier of DCP

fN first filter notch frequency

HV High voltage HW hardware

IEEE488 Is a short-range digital communications 8-bit parallel multi-master interface bus specification developed

by Hewlett Packard

Imeas Current Measure, the actual measured output current

Imax Hardware current limit

IO max Nominal current
Iset Set current
Itrip Trip current

ISO International Standard Organization

LSB least significant bit
MBR channel members
MSB most significant bit
NBR group number

NMT network management service
OSI Open System Interconnect

PCB printed circuit board

p/a passive / active
SN. serial number
USB Universal Serial Bus

SI1 signed character

UI1

UI2 unsigned short integer (16 bit)
UI4 unsigned integer (32 bit)

R4 float according to IEEE-754 single precision format

unsigned character

Vmeas Voltage Measure, the actual measurement output voltage

Vmax Hardware voltage limit

VO max Nominal voltage

Vset Set voltage SW software

4.2 Appendix B – Diagram of operating modes

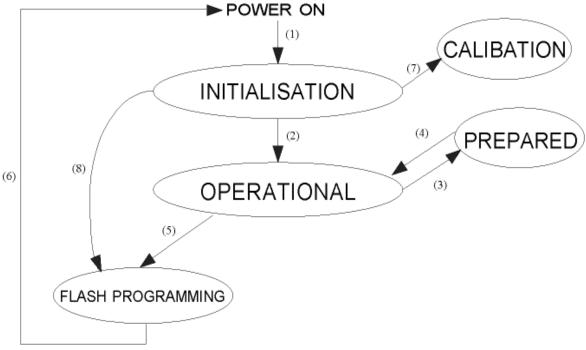


Figure 1

- (1) The INITIALIZATION follows after the POWER ON reset of the device hardware. It can be differ between different device classes.
- (2) The state OPERATIONAL will be obtained by the device itself if all initializations are ready or the state PREPARED runs in time out.
- (3) NMT Stop switches the devices of the CAN segment into the state PREPARED. In this state the permanent settings of the devices can be changed (per device Bit rate, Set voltage, Set current, Ramp speed, General status, Threshold to arm the errors detection, Discharge relay configuration, CAN message configuration and additional the Bit rate as a broadcast massage).
- (4) NMT Start takes the devices of the CAN segment back to the OPERATIONAL state.
- (5) With the special Flash programming access the device runs into the state FLASH PROGRAMMING. The high voltage will be switched off automatically before.
- (6) The device will execute a POWER ON reset itself at the end of FLASH PROGRAMMING.
- (7) The state CALIBRATION will be obtained by setting of the corresponding switches at the Calibration Crate.
- (8) The state FLASH Programming will be obtained also if the corresponding switch at the Calibration Crate / Flash Programming Slot are set.

4.3 Appendix C – Programming flowchart to store the settings permanently with help of General state save bit

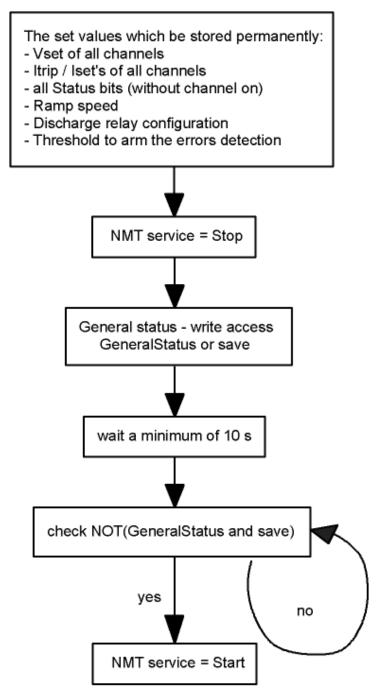


Figure 2

4.4 Appendix D – Programming flowchart to store the configurations of the module permanently with help of General state save bit

The configuration values which can be stored permanently:

- bit rate
- Discharge relay configuration
- Threshold to arm the errors detection

NMT service = Stop

write access of the configuration value

wait a least one of 10 ms

Figure 3

4.5 Appendix E – Literature references

This document

https://iseg-hv.com/download/?dir=SOFTWARE/SNMPguide/SNMP_Programmers-Guide_en.pdf

iseg Hardware Abstraction Layer

http://download.iseg-hv.com/SYSTEMS/MMS/isegHardwareAbstractionLayer.pdf

CAN data link layers in some detail

https://www.can-cia.org/can-knowledge/can/can-data-link-layers/

High Voltage System module

https://iseg-hv.com/

5 Manufacturer contact

iseg Spezialelektronik GmbH

Bautzner Landstr. 23 01454 Radeberg / OT Rossendorf

GERMANY

FON: +49 351 26996-0 | FAX: +49 351 26996-21

www.iseg-hv.com | info@iseg-hv.de | sales@iseg-hv.de