

Technical documentation

Last changed on: 12.11.2019

EDS Series (late 2018)

Distributor High Voltage Module with Common Floating Ground

- 16 / 24 / 48 channel, 1kV 3 kV versions
- Low cost version with reduced current measurement accuracy
- very low ripple and noise
- hardware voltage and current limit
- voltage control and current measurement per channel
- programmable parameters

Document history

Version	Date	Major changes
2.3	12.11.2019	Improved documentation
2.2	06.09.2019	Configuration revised
2.1	17.12.2018	Model revision "late 2018", starting with Serial number: 7100001 Technical data and configurations updated
2.0	28.02.2017 01.10.2018	Relayouted documentation Notes revised

Disclaimer / Copyright

Copyright © 2019 by iseg Spezialelektronik GmbH / Germany. All Rights Reserved.

This document is under copyright of iseg Spezialelektronik GmbH, Germany. It is forbidden to copy, extract parts, duplicate for any kind of publication without a written permission of iseg Spezialelektronik GmbH. This information has been prepared for assisting operation and maintenance personnel to enable efficient use.

The information in this manual is subject to change without notice. We take no responsibility for any mistake in the document. We reserve the right to make changes in the product design without reservation and without notification to the users. We decline all responsibility for damages and injuries caused by an improper use of the device.

Important security information

It is strongly recommended to read the operator's manual before operation. To avoid injury of users it is not allowed to open the unit. There are no parts which can be maintained by users inside of the unit. Opening the unit will void the warranty.

We decline all responsibility for damages and injuries caused by an improper use of the module. It is strongly recommended to read the operators manual before operation.

WARNING!

The non-observance of the advices marked as "Warning!" could lead to possible injury or death.

ATTENTION!

Advices marked as "Attention!" describe actions to avoid possible damages to property.

INFORMATION

ATTENTION!

Advices marked as "Information" give important information.

INFORMATION

Table of Contents

	Do	cument history	2
	Dis	cclaimer / Copyright	2
		portant security information	
1		neral description	
2		hnical data	
3		ndling	
	3.1	Connection	
	3.2	Module status	7
	3.3	Hardware Limit	
	3.4	Safety Loop	7
	3.5	Delayed Trip	8
4	Opt	ions	
	4.1	SLA – Active safety loop	8
	4.2	SLP – Internally powered safety loop	
5	Fror	nt panel versions	9
6	Dim	nensional Drawings	10
7	Con	nectors and PIN assignments	12
8	Acce	esories	13
9	Ord	er guides	13
10		pendix	
11	Wa	arranty & service	14
12	Dis	sposal	14
13	Ma	anufacturer´s contact	14

1 General description

ATTENTION!

The devices must only be used in combination with iseg approved crates.

ATTENTION!

EDS modules are cost effective distribution multichannel high voltage power supplies in MMS system (Eurocard format).

The modules are available as Standard version and as Low Cost version with a reduced resolution and precision of the current measurement. EDS supplies come with common floating ground to reduce the voltage noise level. With up to 48 channels each single channel has an independent voltage control.

The modules are made of high precision components such as 24 bit ADC and 20 bit DAC and provide comprehensive security features.

By offering different configurations and options this module perfectly covers various types of applications such as detector supply, experimental setup or lab use.

2 Technical data

SPECIFICATIONS	EDS STANDARD	EDS LOW COST		
Polarity	Factory fixed, positive or negative			
Floating principle	Common Floating Ground			
Ripple and noise (f > 10 Hz)	< 5 mV _{p-p}			
Ripple and noise (f > 1 kHz)	< 2 r	mV_{p-p}		
Stablity				
Stability – [ΔV _{out} vs. ΔV _{in}]	< 1 • 10 ⁻⁵ V _{nom}			
Stability – [ΔV _{out} vs. ΔR _{load}]	< 5 • 1	0 ⁻⁵ V _{nom}		
Long term stability (1h warmup) 24h	<1•1	0 ⁻⁵ V _{nom}		
Temperature coefficient – Voltage measurement	< 20 p	pm / K		
Temperature coefficient – Current measurement	< 100 p	opm / K		
Set voltage limitation – If the maximum voltage of ripple and noise specifications are only guaranteed				
Resolution – The resolution of measurable values of	depends on the settings of the samplin	g rate and the digital filter!		
Resolution voltage setting	2 • 10	⁶ • V _{nom}		
Resolution voltage measurement (1	2 • 10	⁶ • V _{nom}		
Resolution current measurement ⁽¹	1 • 10 ⁻⁴ • I _{nom}	5 • 10 ⁻⁴ • I _{nom}		
Measurement accuracy – The measurement accur	cy is guaranteed in the range 1% • V _{nom} < V _{out} < V _{nom} and for 1 year			
Accuracy voltage measurement	± (0.01 % • V _{out} + 0.02 % • V _{nom})			
Accuracy current measurement	± (0.1 % • I _{out} + 0.1 % • I _{nom})	± (1 % • I _{out} + 1 % • I _{nom})		
Sample rates ADC (SPS)	5, 10, 25, 50,	60, 100, 500 ⁽²		
Digital filter averages	1, 16, 64 ⁽² , 25	56, 512, 1024		
Voltage ramp up / down	up to 0.2 • V _{nom} / s o	pt. up to 0.75 • V _{nom} / s		
Hardware limits	Potentiometer per n	nodule [V _{max} and I _{max}]		
Limit monitor voltage	2.5	5 V		
Digital interface	CAN (pote	ential free)		
Protection	Safety loop, overload an	d short circuit protected		
HV connector	R51	SHV		
System connector	96 PIN (MMS HV compatib	le, according to DIN 41612)		
Safety loop connector	Lemo	2pole		
Limit monitor connector	Lemo 1- a	and 2-pole		
Case	19" plug-in cassette			
Dimensions – L/W/H	220mm / 8HP / 6U			
Operating temperature	0 – 40 °C			
Storage temperature	-20 – 60 °C			
Humidity	20 – 80 %, not condensing			
Notes: ¹⁾ The resolution of measurable values depends on t ²⁾ Standard factory settings	the settings of the sampling rate and th	ne digital filter!		

Table 1: Technical data: Specifications EDS

CONFIGURATIONS EDS SERIES								
Туре	V _{nom}	I _{nom}	Ch	Max. I _{in} (A) at 24V	HV connector Standard	Item code	Options	
EDS Fy 10x	1 kV	1 mA	16	1.7	R51.46	ED16y010x1050004300	SLA, SLP	
EDS 18 y 10 x	1 kV	1 mA	24	2.6	R51.46	ED24y010x1050004300	SLA, SLP	
EDS 30 y 10 x	1 kV	1 mA	48	5.2	R51.46	ED48y010x1050004300	SLA, SLP	
EDS F y 30 x	3 kV	500 μΑ	16	1.7	R51.46	ED16y030x5040004300	SLA, SLP	
EDS 18 y 30 x	3 kV	500 μΑ	24	2.6	R51.46	ED24y030x5040004300	SLA, SLP	
EDS 30 y 30 x	3 kV	500 μΑ	48	5.2	R51.46	ED48ys030x5040004300	SLA, SLP	
Notes:								

16 channel modules in standard only

Table 2: Technical data: Configurations of EDS series

OPTIONS	OPTION CODE	EXAMPLE	ITEM CODE HEX CODING
POLARITY	Positive: x = p , Negative x = n	EDS F1 10 p	
STANDARD	Standard: y=1	EDS F 1 10p	
LOW COST	low cost: y=3	EDS F 3 10p	
ACTIVE SAFETY LOOP	SLA		001
INTERNALLY SOURCED SAFETY LOOP	SLP		002
Notes:		·	

16 channel modules in standard only

Table 3: Technical data: Options and order information

Handling

3.1 Connection

The supply voltages and the CAN interface are connected to the module via a 96-pin connector on the rear side of the module. The physical address of the module, determined by the slot position in the crate, is also accessible via this connector Modules and crate controllers with different settings of bit rate do not work on the same CAN-Line.

INFORMATION

Note: For proper operation the module must be configured with the correct CAN bitrate, which meets the configuration of the crate controller, the module will be used with. The delivery condition is shown on the modules typeplate (side plate of the module).

INFORMATION Typically newer iseg crate controllers (CC24, CC23, CC238) are delivered with 250 kBits/s standard. Wiener M-POD Controller and older iseg hardware is set on 125 kBit/s standard bitrate.

INFORMATION

Note: EDS modules with Common Floating Ground (CFG) will be delivered with a jumper, which connects the module-GND with the crate-GND. To operate in CFG configuration the jumper (CG-CFG) on the module back must be removed. (see figure 3: dimensional drawing CFG versions)

INFORMATION

3.2 Module status

The module status is displayed by two LEDs on the front panel

green LED "OK" on	all channels have the status "OK"
green LED "OK" off	an error occured: safety loop is possibly not closed or the power supplies are out of tolerance or the threshold of V_{max} , I_{max} , I_{set} or I_{trip} (see function descriptions for details) has been exceeded
	LED will be switched off until the error has been fixed and the corresponding status bit has been erased via software interface.
yellow LED on	one or more channels have status "HV ON" (voltage on output is greater than 56V)
Green LED blinking	Firmware update is stored into flash, do not switch of power supply, crate etc.

Table 4: Module status information

3.3 Hardware Limit

The maximum output voltage for all channels (hardware voltage limit) is defined by the position of the corresponding potentiometer V_{max} . The maximum output current for all channels (hardware current limit) is defined by the position of the corresponding potentiometer I_{max} . The highest possible set value for voltage and current is given by $V_{max} - 2\%$ and $I_{max} - 2\%$, respectively. It is possible to measure the hardware voltage and current limits at the sockets below the potentiometer. The socket voltages are proportional to the relative limits, where 2.5 V corresponds to $102 \pm 2\%$ V_{nom} and $102 \pm 2\%$ I_{nom} . The output voltage and current are limited to the specified value. If a limit is reached or exceeded in any channel the green LED on the front panel turns off.

3.4 Safety Loop

A safety loop can be implemented by the safety loop socket (SL) on the front panel and between the SLcontacts (Pin 22 and PIN 30) at the REDEL-connector, if equipped. If the safety loop is active a high voltage generation in any channel is only possible if the safety loop is closed and an external current in a range of 5 to 20 mA of any polarity is driven through the loop. (For modules with a REDEL-connector the front panel SL input must be shortened.) If the safety loop is opened during the operation the output voltages will be shut off without ramp and the corresponding bits in the ModuleStatus and ModuleEventStatus are cancelled (see in the appendix, *CAN EDCP Programmers-Guide.pdf*). After closing the loop again the ModuleEventStatus has to be reset and the channels have to be switched ON. The loop connectors are potential free, the internal voltage drop is approx. 3 V. By factory setup the safety loop is not active (the corresponding bits are always set). The loop can be activated by removing the jumper "SL-disable" on the rear side of the module.

3.5 Delayed Trip

The function "Delayed Trip" provides a user-configurable, time-delayed response to an increased output current (I_{out}) higher than the set current (I_{set}). The response to this kind of event can be, for example, to ramp down the channel with the programmed ramp. A detailed description for the configuration can be found in the manual <u>CAN_EDCP_Programmers-Guide.pdf</u> (see appendix).

By a programmable timeout with one millisecond resolution, the trip can be delayed up to four seconds. If the measured current exceeds the set current the programmed timeout counter is decremented, keeping the output voltage. If the current returns to a value < I_{set} before timeout the counter will be reset. So this process can be restarted if the current rises again.

Note that the actual current is acquired approximately every 150ms, which can lead to delays in the detection of an exceeded or again reduced current.

If the current at any time exceeds the hardware current limit (about 30% above the current limit value set by the limit potentiometer) the channel will be shut off without delay and ramp.

If the *Delayed Trip* function is activated the voltage ramp should be limited to 1 % of V_{nom} before. Higher values could trigger a trip by internal charge balancing during a ramp, even though the output current does not exceed the set value I_{set} .

If the connected load contains capacities or if l_{set} is very small, it might be necessary to further reduce the ramp speed. Alternatively, the *Delayed Trip* can be activated only after the completion of the ramp.

INFORMATION

An activated KillEnable feature disables the Delayed Trip function.

INFORMATION

An active *KillEnable* function disables the *Delayed Trip* function. If *KillEnable* is active and a trip occurs, the channel is shut down without ramp. However, the actual discharge time strongly depends on the connected load.

4 Options

4.1 SLA – Active safety loop

Actively opens the Safety loop in case of a trip or a delayed trip. This option allows to shut down other modules and devices by interrupting the SL when a trip is detected.

4.2 SLP – Internally powered safety loop

Internal current source for the Safety Loop (no galvanic isolation of the SL and the crate GND).

5 Front panel versions

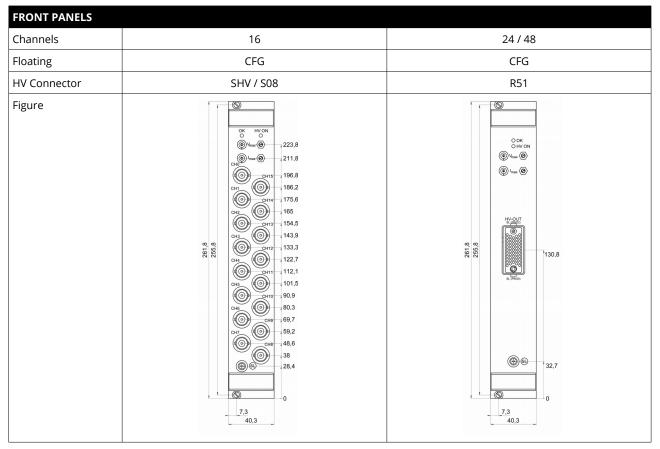


Table 5: Front panel versions

6 Dimensional Drawings

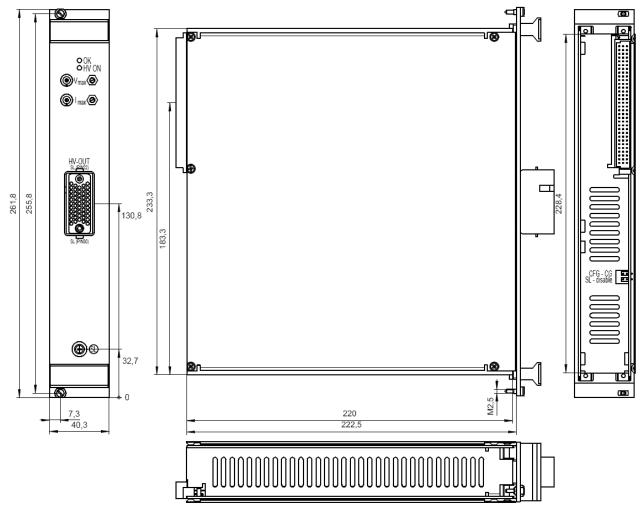


Figure 1: Dimensional Drawing (ex. R51)

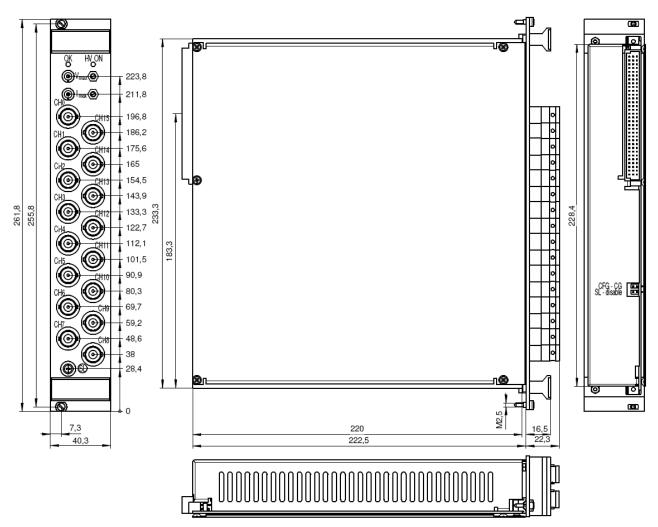


Figure 2: Dimensional Drawing (ex. SHV)

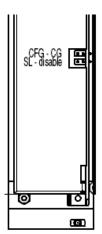


Figure 3: Detailed view of the jumper

7 Connectors and PIN assignments

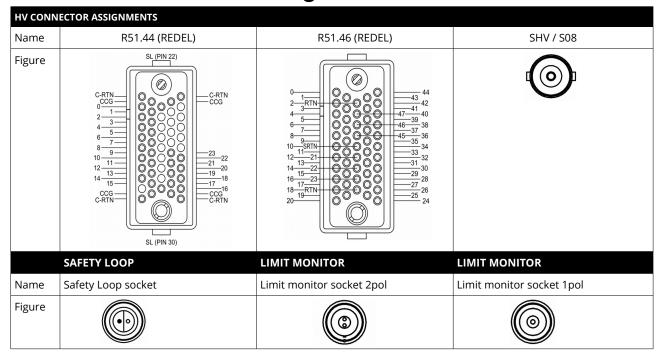


Table 6: Connector and pin assignments

CONNECTORS PART NUMBERS (manufacturer code / iseg accessory parts item code)								
POWER SU		CABLE SIDE						
R51 (REDEL 51 PINS)								
Socket	SLG.H51.LLZG	Connector	SAG.H51.LLZBG					
Socket contacts (male)	FFA.05.403.ZLA1 / Z592189	Connector contacts (female)	ERA.05.403.ZLL1 / Z592263					
Contacts Safety Loop (male)	FGG.2B.565.ZZC / Z592261	Contacts Safety Loop (female)	EGG.3B.665.ZZM / Z592262					
		Socket Load Side	SLA.H51.LLZBG / Z201035					
	SHV (ROSENBERGER)							
Socket	Connector	57K101-006N3 / Z590162						
	S08 (RA	ADIALL)						
Socket	R317.580.000	Connector	R317.005.000 / Z592474					
	Safety Lo	op (LEMO)						
Socket	ERA.0S.302.CLL	Connector	FFA.0S.302.CLAC / Z592312					
	Limit monito	r 1pol. (LEMO)						
Socket	ERN.00.250.CTL	Connector	FFA.00.250.CTAC31 / Z200793					
Limit monitor 2pol. (LEMO)								
Socket	EGG.00.302.CLL	Connector	FGG.00.302.CLAD / Z201466					

Table 7: Connectors part number information

8 Accesories

CAUTION!

Only use genuine iseg parts like power cables, CAN cables and terminators for stable and safe operation.

CAUTION!

ACCESSORY ITEM	ORDER ITEM CODE
REDEL Socket contact, ERA.05.403.ZLL1	Z592263
REDEL SL sockets Contact, EGG.3B.665.ZZM	Z592262
REDEL socket carrier red SLA.H51.LLZG	Z201035
SHV coupler screw for RG58	Z590162
SHV coupler screw for RG58, >5kV	Z592474
Lemo plug 2-pole without collet chuck (SL)	Z592312
1-pin LEMO connector FFA.00.250.CTAC31	Z200793
2-pin LEMO connector, FGG.00.302.CLAD30	Z201466

9 Order guides

CABLE ORDER GUIDE				
POWER SUPPLY SIDE CONNECTOR	CABLE CODE	CABLE DESCRIPTION	LOAD SIDE CONNECTOR	ORDER CODE LLL = length in m (1
R51.44-G	07	HV cable 6kV Kerpen SL-v2YCeHI 37xAWG26/7red	R51.44-A	RG44_C07- <i>LLL</i> _RA44
R51.46-G	08	HV cable 6kV Kerpen SL-v2YCeHI 56xAWG26/7red	R51.46-A	RG46_C07-LLL_RA46
SHV	04	HV cable shielded 30kV (HTV-30S-22-2)	open	SHV_C04-LLL
Notes: 1) Length building examples: 10	0.1, 2	2.5m → 2.5, 12m → 012 , 999m → 999		

Table 8: Guideline for cable ordering

CONFIGU	CONFIGURATION ORDER GUIDE (item code parts)									
ED	48	1	030	Р	504	000	02	00		
High Voltage, Distributor	Numbers of channels	Class	V _{nom}	Polarity	I _{nom} (nA)	Option (hex)	HV-Connector	Customized Version		
		1 = normal Current Measurement 3 = Low Cost Current Measurement	three significante digits • 100V For Examle: 030 = 3000V	p = positive n = negative	two significante digits + number of zeros For Examle: 305 = 3mA	Sum of the hex codes (see table 3) For Example: SLP = 002	02 = SHV 03 = S08 44 and 46 = Redel Multipin (see <u>Connectors</u> and <u>PIN</u> assignments)	00 = none		

Table 9: Item code parts for different configurations

10 Appendix

For more information please use the following download links:

This document

http://download.iseg-hv.com/SYSTEMS/MMS/EDS/iseg_datasheet_EDS_en.pdf

CAN-EDCP Programmers-Guide

http://download.iseg-hv.com/SYSTEMS/MMS/CAN_EDCP_Programmers-Guide.pdf

iseg Hardware Abstraction Layer

http://download.iseg-hv.com/SYSTEMS/MMS/isegHardwareAbstractionLayer.pdf

11 Warranty & service

This device is made with high care and quality assurance methods. The standard factory warranty is 36 months. Please contact the iseg sales department if you wish to extend the warranty.

ATTENTION

Repair and maintenance may only be performed by trained and authorized personnel.

For repair please follow the RMA instructions on our website: www.iseg-hv.com/en/support/rma

12 Disposal

INFORMATION

All high-voltage equipment and integrated components are largely made of recyclable materials. Do not dispose the device with regular residual waste. Please use the recycling and disposal facilities for electrical and electronic equipment available in your country.

13 Manufacturer's contact

iseg Spezialelektronik GmbH

Bautzner Landstr. 23

01454 Radeberg / OT Rossendorf

GERMANY

FON: +49 351 26996-0 | FAX: +49 351 26996-21

www.iseg-hv.com | info@iseg-hv.de |sales@iseg-hv.de