

Technical documentation

Last changed on: 09.10.2020

EHS/EMS "Stack" Series

Precision High Voltage Power Supply Module with stacked Output Channels

- 8 / 16 channel, 100 V 1 kV versions
- cascadeable channels in groups of 2, 4, 8 or 16 channels with 4kV floating voltage, optional up to 5 kV floating voltage
- very low ripple and noise and low temperature coefficient
- single channel floating-ground
- hardware voltage and current limits
- voltage and current control per channel
- programmable parameters (delayed trip etc.)
- perfect for GEM detectors

Document history

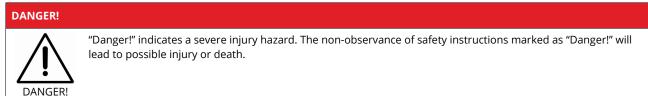
Version	Date	Major changes
2.1	09.10.2020	Improved description C-RTN, CCG, RTN (Table 8: Safety Loop and Limit Connector (drawings not to scale)); R51.XX Table 12: Guideline for cable ordering
2.0	16.01.2020	safety information, glossary, Single Channel Inhibit, Improved documentation
1.3	11.09.2019	new features
1.2	18.07.2019	supplementary notes
1.1	09.07.2019	Improved documentation
1.0	04.07.2017 01.10.2018	Initial version Notes revised

Disclaimer / Copyright

Copyright © 2020 by iseg Spezialelektronik GmbH / Germany. All Rights Reserved.

This document is under copyright of iseg Spezialelektronik GmbH, Germany. It is forbidden to copy, extract parts, duplicate for any kind of publication without a written permission of iseg Spezialelektronik GmbH. This information has been prepared for assisting operation and maintenance personnel to enable efficient use.

The information in this manual is subject to change without notice. We take no responsibility for any mistake in the document. We reserve the right to make changes in the product design without reservation and without notification to the users. We decline all responsibility for damages and injuries caused by an improper use of the device.


Safety

This section contains important security information for the installation and operation of the device. Failure to follow safety instructions and warnings can result in serious injury or death and property damage.

Safety and operating instructuions must be read carefully before starting any operation.

We decline all responsibility for damages and injuries caused which may arise from improper use of our equipment.

Description of the safety instructions

WARNING!

"Warning!" indicates an injury hazard. The non-observance of safety instructions marked as "Warning!" could lead to possible injury or death.

Advices marked as "Caution!" describe actions to avoid possible damages to property.

INFORMATION

CAUTION!

Advices marked as "Information" give important information.

Read the manual.

Attention high voltage!

Important information.

Intended use

The device may only be operated within the limits specified in the data sheet. The permissible ambient conditions (temperature, humidity) must be observed. The device is designed exclusively for the generation of high voltage as specified in the data sheet. Any other use not specified by the manufacturer is not intended. The manufacturer is not liable for any damage resulting from improper use.

Qualification of personnel

A qualified person is someone who is able to assess the work assigned to him, recognize possible dangers and take suitable safety measures on the basis of his technical training, his knowledge and experience as well as his knowledge of the relevant regulations.

General safety instructions

- Observe the valid regulations for accident prevention and environmental protection.
- Observe the safety regulations of the country in which the product is used.
- Observe the technical data and environmental conditions specified in the product documentation.
- You may only put the product into operation after it has been established that the high-voltage device complies with the country-specific regulations, safety regulations and standards of the application.
- The high-voltage power supply unit may only be installed by qualified personnel.

Important safety instructions

WARNING!

To avoid injury of users it is not allowed to open the unit. There are no parts which can be maintained by users inside of the unit. Opening the unit will void the warranty.

WARNING!

The high-voltage cable must be professionally connected to the consumer/load and the connection insulated with the appropriate dielectric strength. Do not power the consumer/load outside of its specified range.

WARNING!

Before connecting or disconnecting HV cables or any operation on the HV output or the application, the unit has to be switched off and discharge of residual voltage has to be finished. Depending on application residual voltages can be present for long time periods.

WARNING!

Do not operate the unit in wet or damp conditions.

WARNING!

Do not operate the unit in an explosive atmosphere.

WARNING!

Do not operate the unit if you suspect the unit or the connected equipment to be damaged.

CAUTION!

When installing the units, make sure that an air flow through the corresponding air inlet and outlet openings is possible.

CAUTION!

When controlling, with software, the high voltage systems, make sure that nobody is near the high voltage or can be injured.

INFORMATION

Please check the compatibility with the devices used.

Table of Contents

	Document history Disclaimer / Copyright				
S	Safety	3			
	Description of the safety instructions	3			
	Intended use	4			
	Qualification of personnel	4			
	General safety instructions	4			
	Important safety instructions	5			
1	General description	9			
2	Technical data	10			
	2.1 Configurations sample	11			
	2.2 Options	11			
3	Functions & Handling	12			
	3.1 Connection	12			
	3.2 Module status	12			
	3.3 Ramping	13			
	3.3.1 Synchronized ramping	13			
	3.3.2 Priority control of voltage ramps	16			
	3.4 Voltage loss compensation over external resistors	16			
	3.5 Measurement range selection for all channels (HP models only)	17			
	3.6 Hardware Limits	17			
	3.7 Safety Loop3.8 Protection functionality for detectors	17 17			
	3.8.1 Constant Current Mode	18			
	3.8.2 KillEnable	18			
	3.8.3 Delayed Trip	19			
	3.8.4 Delayed Trip with Bottom Voltage	19			
4	Getting started: EHS Stack configuration	23			
	4.1 EHS Stack configuration via Web-browser	23			
	4.2 EHS Stack configuration via SNMP	24			
5	Options	25			
	5.1 Single Channel Inhibit (IU, ID, NIU, NID)	25			
	5.2 SLA – Active safety loop	26			
	5.3 SLP – Internally powered safety loop	26			
	5.4 1CR – One current measurement range only (HP)	26			
6	Front panel	27			
7	Dimensional Drawings	28			
8	Connectors and PIN assignments	30			
9	Accesories	32			
10	Order guides	33			
11	Appendix	34			
12	Glossary	35			

13	Warranty & service	36
14	Disposal	36
15	Manufacturer´s contact	36

1 General description

CAUTION!

Caution

The devices must only be used in combination with iseg approved crates.

The EHS series 7 modules are standard and EHS series 8 modules High Precision multichannel high voltage power supplies in 6U Eurocard format. The output voltage features high stability, low ripple and noise and low temperature coefficient. Each single channel has an independent voltage and current control. The data for set and measure values is given in a format of Floating Point Single Precision values. The modules are equipped with 24 bit ADC and 16 bit DAC circuits.

The outputs RETURN - floating HV-GND - of each channel are floating against each other and against ground. The channels are cascadable in groups of 2, 4, 8 or 16 Channels. The floating voltage is limited to 4kV in order to ensure lowest ripple and noise, it can be increased to 5kV with degraded ripple and noise standards. The nominal voltage of the individual channels can be configured up to 1,000V. The maximum current per channel is 1mA. Modules with mixed nominal voltages are identified by the model name EMS, the channel configuration is specified by a three-digit number contained in the item code (see table 13).

High Precision EHS modules is equipped with a second current measurement range to precisely meter low currents. Switching between the measurement ranges is performed automatically.

The high voltage output and return contacts are provided in a 51 pin REDEL HV-connector.

2 Technical data

SPECIFICATIONS	EHS series 7 Standard	EHS series 8	High Precision				
Output voltage / per channel	Configurable, max. 1 kV						
Output current / per channel	max. 1 mA						
Channels		8 / 16					
Cascadability	Channels can be	grouped individually (2, 4, 8,	16 channel groups)				
Polarity	F	actory fixed, positive or nega	itive				
Floating principle	Sir	ngle Channel Floating Ground	d (FG)				
Potential difference		4 kV, optional 5kV					
Ripple and noise (f > 10 Hz) (at max. load and $ V_{out} > 2\% \cdot V_{nom}$)	for module	5 mV _{p-p} against RTN; s with max. floating voltage >	> 4kV: 20 mV _{p-p}				
Stability							
Stability - [ΔV_{out} vs. ΔV_{in}]		$2 \cdot 10^{-4} \cdot V_{nom}$					
Stability - [ΔV _{out} vs. ΔR _{load}]		$2 \cdot 10^{-4} \cdot V_{nom}$					
Long Term Stability (1h Warmup) 24h							
Temperature coefficient	50 ppm / K	30 p	pm / K				
Resolution voltage setting		50 mV					
Resolution current setting	20 nA						
Resolution voltage measurement ⁽¹		5 mV					
Resolution current measurement ⁽¹	5 nA 1 st measurement range: 5 nA 2 nd measurement range: 100 pA [I _{out} < 20μA]						
Measurement accuracy - The measurer	nent accuracy is guaranteed i	n the range $1\% \cdot V_{nom} < V_{Out} <$	V _{nom} and for 1 year				
Accuracy voltage measurement	± (0.01% • V _{Out} + 0.02% • V _{nom})						
Accuracy current measurement	\pm (0.05% • I _{out} + 0.1% • I _{nom})	1 st measurement range: 2 nd measurement range:	$\begin{array}{l} \pm \mbox{ (0.02\% \bullet I_{out} + 0.05\% \bullet I_{nom})} \\ \pm \mbox{ (0.02\% \bullet I_{out} + 10 nA)} \\ [I_{out} < 20 \mu A] \end{array}$				
Sample rates ADC (SPS)		5, 10, 20, 40, 80 ⁽²					
Digital filter averages		1, 16, 64 ⁽² , 256, 512, 1024					
Voltage ramp up / down [V/s]		1•10 ⁻⁶ • V _{set} up to 0.5 • V _{set}					
Hardware limits	potentiometer pe	potentiometer per module (V_{max} / I_{max} is the same for all channels)					
Digital interface		CAN-Interface (potential fre	e)				
System connector	96-pin connector according to DIN 41612						
Power requirements V_{IN}	0.2 A) 0.4 A)						
Protection	Safety loop, overload and short circuit protected, optionally INHIBIT per channel (ID / IU, NID / NIU) (ATTENTION: there is only one short circuit or arc per second allowed!)						
HV connector	5	1 pin REDEL HV connector (F	851)				
Safety loop connector		Lemo 2pole					
Limit Monitor socket		Lemo 1pole					

SPECIFICATIONS	EHS series 7 Standard	EHS series 8 High Precision		
Case	6U Euro cassette			
Dimensions – L/W/H	220mm / 8HP (40.64mm) / 6U			
Operating temperature	0 40 °C			
Storage temperatures	-20 60 °C			
Humidity		20 – 80 %, not condensing		
Notes:				

¹⁾ The resolution of measurable values depends on the settings of the sampling rate and the digital filter! ²⁾ Standard factory settings

Table 1: Technical data: Specifications EHS Series 7 and 8

2.1 Configurations sample

CONFIGURATIONS (sample configuration)																
HV-CHANNEL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EM168n001 (2 x 8 channels cascade)																
Group	G1	G2														
Polarity (p=positiv, n=negative)	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n
Output Voltage V _{nom} in V	800	400	800	400	800	400	800	400	800	400	800	400	800	400	800	400
Output current I _{nom} in mA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 2: Technical data: Sample configuration of EHS series 8 High Precision modules

INFORMATION

The shown configuration are exemplarily. Please contact iseg to request custom configurations. The configuration is defined when ordering and can only be changed at iseg factory.

INFORMATION

2.2 Options

OPTIONS	OPTION CODE	EXAMPLE	ITEM CODE HEX CODING
POLARITY	Positive: x = p Pegative x = n	EMS 87 05 p	
SINGLE CHANNEL INHIBIT - down	ID		400
SINGLE CHANNEL INHIBIT - up	IU		800
NEGATED LOGIC INHIBIT ID, IU	N		80
ACTIVE SAFETY LOOP	SLA		001
INTERNALLY POWERED SAFETY LOOP	SLP		002

Table 3: Technical data: Options and order information

3 Functions & Handling

3.1 Connection

The supply voltages and the CAN interface are connected to the module via a 96-pin connector on the rear side of the module. The physical address of the module, determined by the slot position in the crate, is also read via this connector.

INFORMATION								
∕ì∖	Note: For proper operation the module must be configured with the correct CAN bitrate, which meets the configuration of the crate controller, the module will be used with. The delivery condition is shown on the modules typeplate (side plate of the module).							
INFORMATION	Typically newer iseg crate controllers (CC24, CC23, CC238) are delivered with 250kBits/s standard. Wiener M-POD Controller and older iseg hardware is set on 125 kBit/s standard bitrate.							

3.2 Module status

The module status is displayed by two LEDs on the front panel

green LED "OK" on	all channels have the status "OK"						
green LED "OK" off	an error occured: safety loop is possibly not closed or the power supplies are out of tolerance or the threshold of V_{max} , I_{max} , I_{set} or I_{trip} (see function descriptions for details) has been exceeded						
	LED will be switched off until the error has been fixed and the corresponding status bit has been erased via software interface.						
yellow LED on	one or more channels have status "HV ON" (voltage on output is greater than 56V)						
green LED blinking	Firmware update is stored into flash, do not switch of power supply, crate etc.						

Table 4: Module status information

INFORMATION

Note: For more information on module firmware upgrade procedure, please refer to your <u>crate controller</u> <u>manual</u> (see Appendix).

3.3 Ramping

3.3.1 Synchronized ramping

A special ramping engine allows simultaneous up- and down ramping of all channels by checking the engagement of the regulation after switch on. This allows time-wise nearly common voltage ramps.

The ramping speed can be configuered by the module datapoint **VoltageRampSpeed**. If an off channel is switched on, the voltage at time **t** during the ramp is given by

$V(t) = V_{set} \cdot VoltageRampSpeed/100/s \cdot (t - t_0)$,

where **t**_o is the time when the ramp starts. This guarantees that all channels starting to ramp at the same time will also approach their set values at the same time. An example for syncronized is shown in Figure 1.

When ramping from a set voltage $V_{set,1}$ to a new voltage $V_{set,2}$ the voltage ramp speed refers to the graeter of the two values, i.e. the voltage change is given by

Max(V_{set,2}, V_{set,1}) • VoltageRampSpeed/100/s.

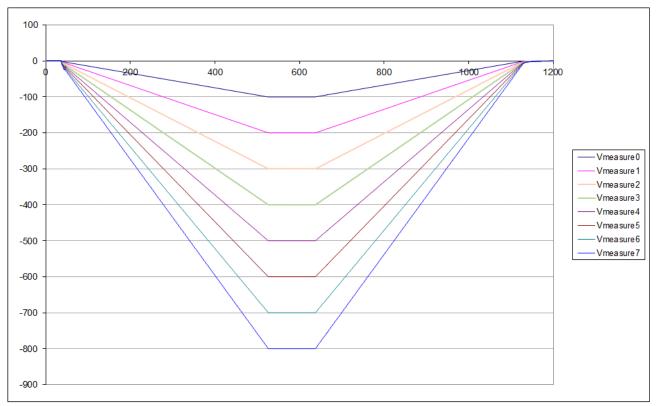


Figure 1: Example for synchronized voltage ramp (ex. EM168n001 - negative polarity)

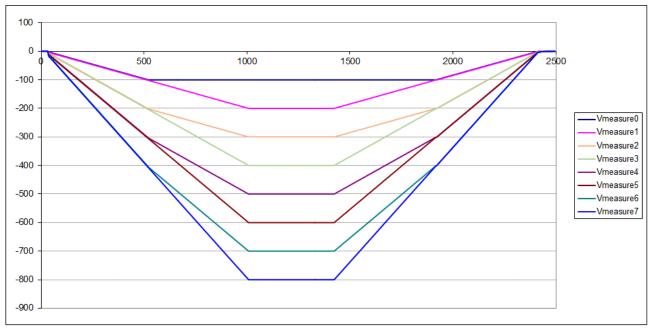


Figure 2

Channel	Priority
Ch0	0
Ch1	1
Ch2	0
Ch3	1
Ch4	0
Ch5	1
Ch2 Ch3 Ch4 Ch5 Ch6	0
Ch7	1

Table 5 - ramping sequence for the priority specification

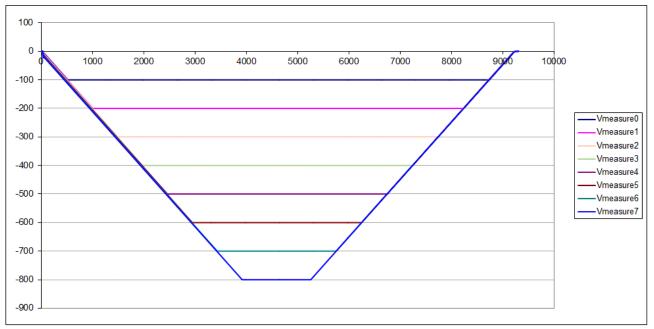


Figure 3

Channel	Priority
Ch0	0
Ch1	1
Ch2	2
Ch3	3
Ch4	4
Ch5	5
Ch6	6
Ch7	7

Table 6 - ramping sequence for the priority specification

3.3.2 Priority control of voltage ramps

For each channel a ramping priority value between **0** and **7** can be defined (lower number = higher priority). If multiple channels with different priority values are switched on at the same time, at first all channels with the lowest priority number will ramp up. Once these channel reached their set voltages the channels with the next higher priority number start ramping. This procedure repeats until all channels ramped up. When channels are switched off the sequence is inverted, i.e. the ramp down starts with the channels with the highest priority number.

An example for ramping with equal priority values in all channels is given in figure 1.

The ramping sequence for the priority specification in table 5 is shown in figure 2.

The ramping sequence for the priority specification in table 6 is shown in figure 3.

Service	SNMP	isegHAL	iCSservice
Data - point	outputVoltageRampPriority	line.device.channel.VoltageRampPriority	line.device.channel.Setup.voltageRampPriority

INFORMATION

More details about the datapoint configuration can be found in chapter <u>4.Getting started: EHS Stack</u> <u>configuration</u>.

3.4 Voltage loss compensation over external resistors

A special feature of the EHS Stack modules allows an automatic compensation of the voltage loss over external resistors, connected to the HV output in series to the actual load. The ohmic value of such resistor, can be specified for each channel.

The compensation works as follows: When the channel is operating the voltage of the HV output is increased automatically by $R \cdot I_{meas}$. The displayed value of the measured voltage is also adapted, i.e. showing the actual (calculated) voltage behind the resistor.

Service	SNMP	isegHAL	iCSservice
Data - point	outputResistance	line.device.channel.Resistance	line.device.channel.Setup.resistanceExternal

INFORMATION				
	More details about the datapoint configuration can be found in chapter <u>4.Getting started: EHS Stack</u> configuration.			

3.5 Measurement range selection for all channels (HP models only)

The selection of the current measurement range (1st and 2nd measurement range, see technical data) is done automatically and for all channels at the same time. The HV channel with the highest measured current value defines the measurement range, i.e. only if the measured current in all channels is smaller 20µA the 2nd measurement range is used.

3.6 Hardware Limits

The maximum output voltage for all channels (hardware voltage limit) is defined by the position of the corresponding potentiometer V_{max} . The maximum output current for all channels (hardware current limit) is defined by the position of the corresponding potentiometer I_{max} . The highest possible set value for voltage and current is given by $V_{max} - 2\%$ and $I_{max} - 2\%$, respectively. It is possible to measure the hardware voltage and current limits at the sockets below the potentiometer. The socket voltages are proportional to the relative limits, where 2.5 V corresponds to $102 \pm 2\% \cdot V_{nom}$ and $102 \pm 2\% \cdot I_{nom}$. The output voltage and current are limited to the specified value. If a limit is reached or exceeded in any channel the green LED "OK" at the front panel turns off.

3.7 Safety Loop

A safety loop can be implemented by the safety loop socket (SL) on the front panel and between the SLcontacts (<u>Pin 22 and</u> <u>PIN 30</u>) at the REDEL-connector, if equipped. If the safety loop is active a high voltage generation in any channel is only possible if the safety loop is closed and an external current in a range of 5 to 20 mA of any polarity is driven through the loop. (For modules with a REDEL-connector the front panel SL input must be shortened.) If the safety loop is opened during the operation the output voltages will be shut off without ramp, the corresponding bit in ModuleStatus is cancelled and in ModuleEventStatus is set (see "<u>CAN EDCP Programmers-Guide.pdf</u>" in the appendix). After closing the loop again the ModuleEventStatus has to be reset and the channels have to be switched ON. The loop connectors are potential free, the internal voltage drop is approx. 3 V. By factory setup the safety loop is not active (the corresponding bits are always set). The loop can be activated by removing the jumper "SL-disable" <u>on the rear side of the module</u>.

3.8 Protection functionality for detectors

Modules of the EHS Stack series include a number of user-configurable protection features that can prevent overcurrent, automatically decrease channel voltages as a response to increased currents, initiate automatic shut down sequences and/or prevent voltage rebounds caused by time-limited discharge events.

The following general terms are used to describe the features:

- V_{set} is the user programmable voltage set value. This value can be changed any time by the user.
- V_{setint} is the actual set value for the internal voltage regulator of a channel, generated by a DAC. In normal, voltage regulated operation it is equal to V_{set}. During voltage ramps V_{setint} continuously changes such, that the output voltage follows the specified ramp speed. Within the special operation modes described below it could also get values different from V_{set}.
- V_{meas} is the voltage at the channel output, measured by the module.
- t_{VM} is the time to obtain a new value V_{meas} after a sudden voltage change due to a discharge in the channel load. It
 includes internal slew rates and averaging to obtain a sufficiently stable and precise value. t_{VM} is typically below 500ms

3.8.1 Constant Current Mode

The Constant Current Mode (CC) is the default response on an increased output current. If the output current would exceed the set current (I_{set}) at the specified set voltage (V_{set}) the channel operates as a constant current source at I_{set} . For modules with one current measurement range the module can operate in CC Mode for I_{set} values in the range $I_{nom} \ge I_{set} \ge 5E-04 \cdot I_{nom}$. Although the modules accepts smaller values I_{set} , the CC Mode can only operate down to the given limitation. Smaller set value will only affect the functions <u>KillEnable</u> and <u>Delayed trip</u>, described below.

For modules with two current measurement ranges, the following limitations must be considered when operating a channel with I_{set} values in the lower current measurement range (i.e. typically < 20µA):

- If I_{set} < 20µA the maximum voltage ramp speed is limited to 1 % of V_{nom}. If the load has a significant capacitance it might be necessary to further reduce the voltage ramp speed to avoid ramp instabilities.
- While a channel is operating in CC Mode it is not possible to switch between the two current measurement ranges, i.e. the set current cannot be changed from a value > 20 µA to a value < 20 µA or vice versa. To change the set current across the measurement range boundary the channel must stop operation in CC mode (i.e. by switching off the channel or reducing the voltage such, that it operates in Constant Voltage Mode (CV)).

While a channel operates in CC mode, within the time t_{VM} the corresponding output voltage V_{meas} is obtained. Once V_{meas} is available, V_{setint} is lowered to an (absolute) value slightly above V_{meas} . For the case the output current decreases again, this prevents that the output voltage suddenly jumps back (rebounds) to V_{set} . Instead, it will ramp up from V_{setint} to V_{set} with the specified ramp speed.

3.8.2 KillEnable

The function KillEnable forces the shut down of a channel at the fastest hardware response time (smaller than 1 ms) if a specified trip current is exceeded. If *KillEnable* is active the value of the set current (**I**_{set}) defines the trip current. An approach or exceedance of this current (detected by a hardware signal) will immediately shut off the channel without ramp. However, the actual discharge time strongly depends on the connected load.

The following limitations must be considered if the function KillEnable is activated:

- Maximum voltage ramp speed is limited to 1 % of V_{nom}. To avoid unintended current trips during ramps it might be
 necessary to further reduce the ramp speed for very small trip currents or capacitive loads. Alternatively KillEnable can
 be activated only after the completion of the ramp.
- The minimum trip currents for a hardware detection is 5E-04 I_{nom} for modules with one current measurement range and 200 nA for modules with two current measurement ranges. It is possible to specify smaller trip values, however there is no hardware current limitation below the hardware detection limits. Also, the response time on a trip that does not triggers the hardware detection can be up to 1s.
- Modules with two current measurement ranges do not change the current measurement range automatically if KillEnable is active. The channel remains in the high measurement range if $I_{set} > 20\mu$ A and in the low measurement range for $I_{set} \le 20\mu$ A.

3.8.3 Delayed Trip

The function "*Delayed Trip*" provides a user-configurable, time-delayed response to an increased output current (I_{out}) higher than the set current (I_{set}).

By a programmable timeout with one millisecond resolution, the trip can be delayed up to four seconds. During this time, the output current is limited to the value of I_{set} (constant current mode).

The hardware regulation signals, constant voltage (CV) or constant current (CC), are sampled every millisecond by the microprocessor. Once the constant current mode is active, the programmed timeout counter is decremented. If the HV channel returns to constant voltage mode before timeout (i.e. $I_{out} < I_{set}$), the counter will be reset. So this process can be restarted if the current rises again.

While the channel operates in CC mode, within the time t_{VM} the corresponding output voltage V_{meas} is obtained. Once V_{meas} is available (and the channel still in CC mode), V_{setint} is lowered to an (absolute) value slightly higher than V_{meas} . In case the channel returns to CV mode before the timeout counter approaches zero, it will ramp up from V_{setint} to V_{set} with the specified ramp speed. In this case the counter is only reset once the voltage is back at V_{set} .

3.8.4 Delayed Trip with Bottom Voltage

The usage of a bottom voltage is a special feature to avoid voltage rebound effects that might follow a discharge in GEM detectors.

A bottom voltage (V_{bottom}) can be specified for each channel in as a relative value from 0% to 100%, referring to the programmed set voltage (V_{set}) of the channel.

If a channel switches to constant current mode, e.g. caused by a discharge, V_{setint} of the channel is immediately decreased to V_{bottom} . A bottom voltage of 0% is equivalent to a shut down of the channel, while 100% does not reduce the set voltage (followed by procedure described in section 3.8.3 Delayed Trip). For bottom voltages between 0 and 100% the discharge event can result in three different operational sequences:

a) If the absolute value of the specified bottom voltage is below the voltage resulting in the constant current mode

 $(|V_{bottom}| < |V_{cc}|)$, the channel will immediately return to constant voltage (CV) operation, at the bottom voltage. In this case no further reaction takes place, see Figure 4.

Without user intervention the channel remains at V_{bottom} . If the voltage bottom event is deleted, the channel will ramp back to the specified value V_{set} .

Service	SNMP	isegHAL	iCSservice
Data -	outputVoltageBottom	8	line.device.channel.Setup.voltageBottom
point	outputvoltageBottomReached	line.device.channel.EventStatus:25	line.device.channel.Event.voltageBottom

	More details about the datapoint configuration can be found in chapter <u>4.Getting started: EHS Stack</u> <u>configuration</u> .
--	--

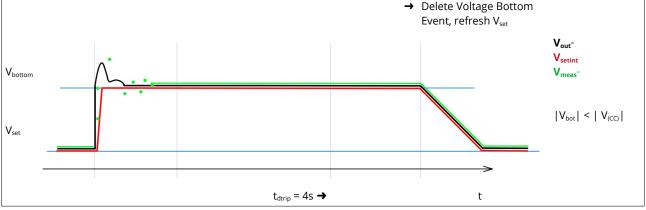


Figure 4: Discharge with $|V_{bottom}| < |V_{cc}|$, shown for a channel with negative output voltage

b) For $|V_{bottom}| > |V_{CC}|$ the channel will remain in CC operation as long as the discharge goes on. If the discharge stopps before trip timeout (i.e. the channel returns to CV mode at $V_{setint} = V_{bottom}$) the channel voltage remains at V_{bottom} until the voltage bottom event is deleted.

If the time the channel operates in CC mode is greater t_{VM} , V_{setint} is lowered accordingly and the channel voltage returns to V_{bottom} with the specified ramp speed (instead of rebounding) once the discharge stopps. This case is illustrated in Figure 5.

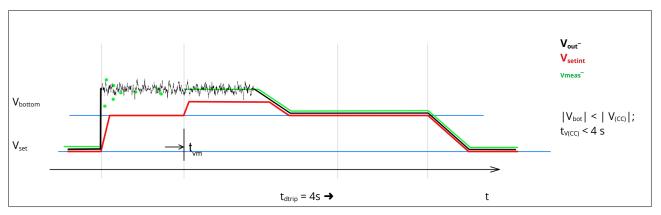


Figure 5: Discharge with |V_{bottom}| > |V_{cc}| and recovery before trip timeout, shown for a channel with negative output voltage

c) For $|V_{bottom}| > |V_{cc}|$ the channel will remain in CC operation. If at the end of the delayed trip time the channel is still in CC mode all channels of the stack group are ramped down and a trip event will be generated.

If the trip delay time is greater t_{VM} , V_{setint} is lowered accordingly. The ramp down of the tripped channel starts from this value. This case is illustrated in Figure 6. Figure 7 shows the shut down behaviour of all channels after a trip in channel 3.

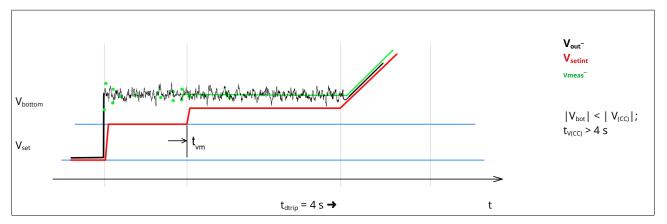


Figure 6: Discharge with $|V_{bottam}| > |V_{cc}|$ without recovery before trip timeout, shown for a channel with negative output voltage

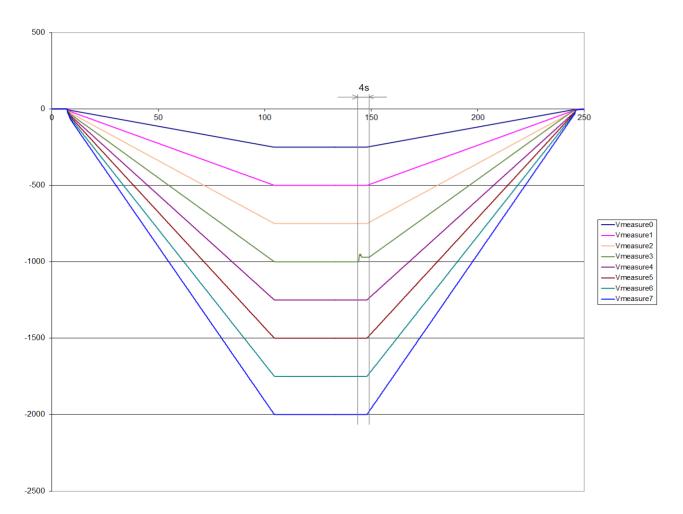
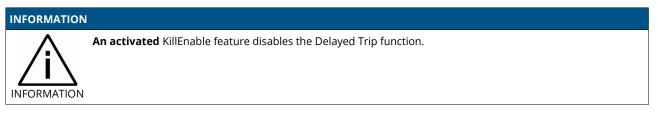



Figure 7

An active *KillEnable* function disables the *Delayed Trip* function.

4 Getting started: EHS Stack configuration

INFORMATION

Please read CC24 manual as a general description of iCS2 - iseg Communication Server 2 first. The manual can be downloaded at <u>https://iseg-hv.com/de/products/detail/MMS-Controller</u>.

The access the configuration, open a browser and enter the IP-adress of the CC24 controller

- Login with user name and password (admin, password).
- Select iCSconfig folder

4.1 EHS Stack configuration via Web-browser

The iCSconfig - hardware dialog is the easiest way to access the special setup data points for EHS Stack modules.

- Priority → voltage ramp priority for the channel
- V_{bottom} → specify bottom voltage (percentage of V_{set})
- ext. Resistance → specify external resistors (unit: Ohm) for automatic voltage loss compensation

hardware			save auto configuration rescan hardware				
iCS connected devices							
Note: The detertion/autoconfiguration is only available if all d	has are switched on Please switch on crata(s) manually to enable detertion of the motivies and	tis name after about 10 seconds. To save numeri configuration for later restorees	a rease use the awart terrore				
	Now: The detection/autoonfiguration is only available if all devices are switched on. Please switch on crass() manually, to enable detection of the mobiles and reload this page after about 10 seconds. To save current configuration for later resorts, please use the expontences						
Master							
controller slot 1							
detected information apply config +	module config serial check ok		module settings				
Line ID Address ID			Inoque sealings				
0 1	Line ID	Address ID	Settings Events				
Serial number model	0	1	module title				
8150013 EM168n0032004	Serial number	Firmware	8150013				
	8150013	E08F7 E03F7	digital filter				
current firmware	Model number		04				
E00F7 02.20 detected channels	EM108n00320048		ADC sample rate				
	catalog info		- select -				
D Vitom Inom Polarty Output	Select a model (optional)		preferred voltage unit				
0 1000 0.001 n min	- select -		v frid preferred current unit				
2 1000 0.001 n nil	- 30000.1		mA				
3 1000 0.001 n na	configured channels		preferred low current range unit				
4 1000 0.001 n nim 8 1000 0.001 n nim		•	HA .				
6 1000 0.001 A AV8	0 Ales Vitem Inter Poerty Outputse	Pronty Votion ext. Resistance 0 V 80 0 0	preferred voltage precision				
7 1000 0.001 A AB	1 1000 0.001 a	0 ¥ 80 % 0					
9 1000 0.001 n mB	2 1000 0.001 n /n		preferred current precision				
10 1000 0.001 n mb	3 1000 0.001 n nie	0 ¥ 80 x 0					
11 1000 0.001 n mb	4 1000 0.001 n na	0 ¥ 15 % 0	eferred low current range precision				
13 1000 0.001 e els	5 1000 0.001 A Ale	0 ¥ 15 5 0					
14 1000 0.001 n mb	6 1000 0.001 n ne	0 V 15 N 0					
	7 1000 0.001 A A.W	0 ¥ 15 % 0					
	8 1000 0.001 n nie	0 7 0 0					
	9 1000 0.001 n na	0 1 0					
	10 1000 0.001 A AM	0 ¥ 84 5 0					
	11 1000 0.001 n 18	0 V 0 N 0					
	12 1000 0.001 4	0 1 0 0					
	43 a 1000 0001 a a 4	0 7 0 0 0					
	14 1000 0.001 n nin	0 7 0 5 0					
	45 1000 0.001 n nie	0 • 0					

Figure 8: sows the iCSconfig hardware configuration dialog to configure setup data like Priority, Bbottom and external resistance.

configured channels

D	Allas	Vnom	Inom	Polarity	Output-Mode	Priority	ext. Resistance
0		800	0.001	n	n'a	• •	9900
1		400	0.001	n	n/a	1 •	9900
2		800	0.001	n	n'a	•	9900
3		400	0.001	n	n/a	1 •	9900
4		800	0.001	n	n/a	•	9900
5		400	0.001	n	n/a	1 •	9900
6		800	0.001	n	n'a	•	9900
7		400	0.001	n	n'a	1 •	9900

Figure 9: Detail of Figure 8

4.2 EHS Stack configuration via SNMP

Before using SNMP commands the service must be enabled in the iCSconfig - SNMP dialog:

- click "Generate configuration"
- switch on "autostart SNMP interface"
- click "start SNMP"
- click "save"
- the file WIENER-CRATE-MIB.txt can be downloaded

The current WIENER-CRATE-MIB.txt file contains additional SNMP item for EHS Stack module:

- outputVoltageRampPriority
- outputVoltageBottom
- outputResistance
- outputVoltageBottomReached of outputStatus

5 Options

5.1 Single Channel Inhibit (IU, ID, NIU, NID)

INFORMATION	INFORMATION		
	INHIBIT is an external signal, that switches off the high voltage for the device or a specific channel.		

Optionally it is possible to equip modules with an *INHIBIT* for each channel via a <u>Sub-D connector</u>. Channel 0 to 7 corresponds to Pin 1 to 8 at the Sub-D connector, Pin 9 is connected to GND.

The INHIBIT signals are TTL-level, the signal logic and default states can be configured. The following settings are possible:

Option – IU (default)

INHIBIT signal logic:	LOW-active (LOW \rightarrow HV-generation stopped)
default state:	HIGH (internal pull-up resistor applied)
open INHIBIT signal input:	HV enabled

Option – ID

INHIBIT signal logic:	LOW-active (LOW \rightarrow HV-generation stopped)
default state:	LOW (internal pull-down resistor applied)
open INHIBIT signal input:	HV disabled

Option – NIU

INHIBIT signal logic:	HIGH-active (HIGH \rightarrow HV-generation stopped)
default state:	HIGH (internal pull-up resistor applied)
open INHIBIT signal input:	HV disabled

Option – NID

INHIBIT signal logic:	HIGH-active (HIGH \rightarrow HV-generation stopped)
default state:	LOW (internal pull-down resistor applied)
open INHIBIT signal input:	HV enabled

The INHIBIT signal must be applied for at least 100 ms to guarantee a detection. If an Inhibit signal is detected, the channel status bit 'Is External Inhibit' and the channel event status bit 'Event External Inhibit' are set. One of the following reactions to this signal can be programmed (see chapter "6.5.1.7 External channel inhibit" in the <u>CAN_EDCP_Programmers-Guide.pdf</u>):

- No Action (default)
- Turn off the channel with ramp
- Shut down the channel without ramp
- Shut down all channels without ramp

When the INHIBIT is no longer active, the Inhibit flag must be reset before the voltage can be switched on again.

5.2 SLA – Active safety loop

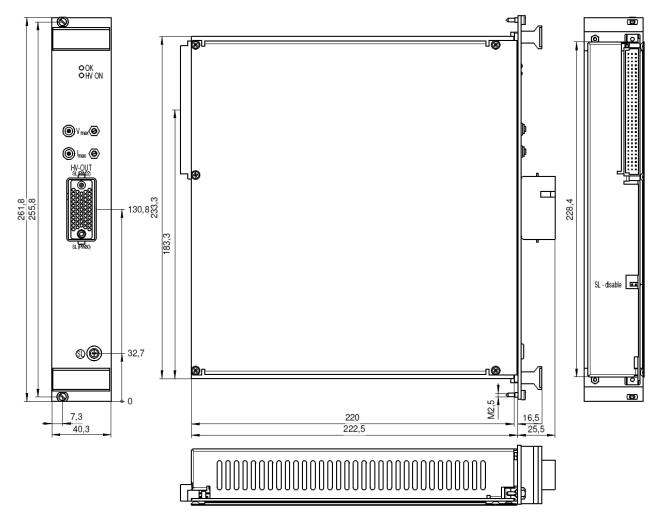
Actively opens the Safety loop in case of a trip or a delayed trip. This option allows to shut down other modules and devices by interrupting the SL when a trip is detected.

5.3 SLP – Internally powered safety loop

Internal current source for the Safety Loop (no galvanic isolation of the SL and the crate GND).

5.4 1CR - One current measurement range only (HP)

Only one current measurement range for High Precision Modules



6 Front panel

FRONT PANELS		
Channels	8 / 16	8 / 16
HV Connector	R51	R51
Options	-	INHIBIT
Figure		
	⊂ OK ⊖ HV ON © V _{max} ⊘	⊂ ΟΚ ○ ΗV ΟΝ ⊚ Vmax ⊗
	I max S	

Table 7: EHS Front panel layout

7 Dimensional Drawings

Figure 10: EHS, without Inhibit

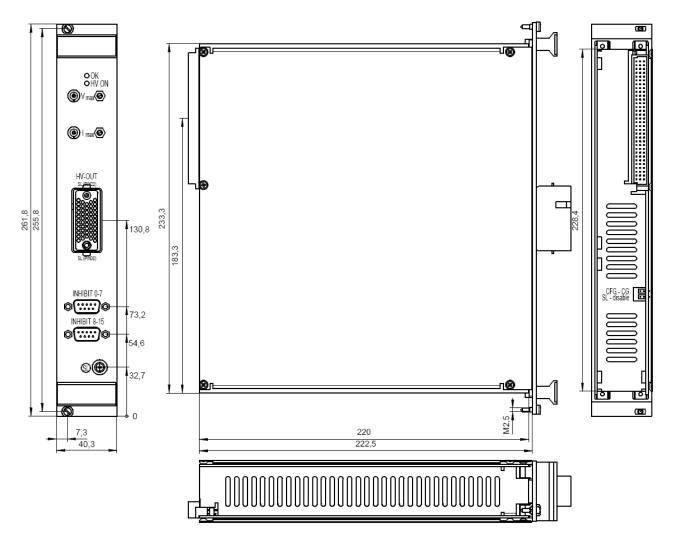


Figure 11: EHS, with Inhibit

8 Connectors and PIN assignments

Name	R51.47	R51.48	
Figure	HV ETN 0 0 0 1 1 1 2 2 2 2 3 3 4 4 6 5 6 7 7 CCG SL (PIN 22) 0 0 0 0 0 0 0 0 0 0 0 0 0	SL (PIN 22) HV, BTN 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
SAFETY L	ООР		
Name	Safety Loop socket		
Figure	PIN2 ST PIN1 BU		
LIMIT MO	DNITOR		
Name	Limit monitor socket		
Figure			
IINHIBIT			
Name	INHIBIT connector- DSUB9	DSUB9	
Figure	PININHIBIT 1INHIBIT 21CHANNEL 0CHANNEL 82CHANNEL 1CHANNEL 93CHANNEL 2CHANNEL 104CHANNEL 3CHANNEL 115CHANNEL 4CHANNEL 126CHANNEL 5CHANNEL 137CHANNEL 6CHANNEL 148CHANNEL 7CHANNEL 159GNDGND		
Notes: C-RTN: CCG: HV: RTN: SRTN: SL:	Common Return Common Crate Ground High Voltage Return Special Return, checks if the contact is plugged Safty Loop	lin	

Table 8: Safety Loop and Limit Connector (drawings not to scale)

CONNECTORS PART NUMBERS (manufacturer code / iseg accessory parts item code)						
POWER SU	PPLY SIDE	CABLE SIDE				
R51 (REDEL 51 PINS)						
Socket	SLG.H51.LLZG	Connector	SAG.H51.LLZBG / Z200325			
Socket contacts (male)	FFA.05.403.ZLA1 / Z592189	Connector contacts (female)	ERA.05.403.ZLL1 / Z592263			
Contacts Saf. Loop (male)	FGG.2B.565.ZZC / Z592261	Contacts Saf. Loop (female)	EGG.3B.665.ZZM / Z592262			
		Socket Load Side	SLA.H51.LLZBG / Z201035			
Safety Loop (LEMO)						
Socket ERA.0S.302.CLL		Connector	FFA.0S.302.CLAC / Z592312			
Limit monitor 1pol. (LEMO)						
Socket	ERN.00.250.CTL	Connector	FFA.00.250.CTAC31 / Z200793			

Tabelle 9: Connectors part number information

HV - OUT (high voltage)	Pin	RETURNS	Pin
Channel 0 – HV _{out}	2	Channel 0 - RETURN	13
Channel 1 – HV _{out}	3	Channel 1 - RETURN	14
Channel 2 – HV _{out}	4	Channel 2 - RETURN	15
Channel 3 – HV _{out}	5	Channel 3 - RETURN	16
Channel 4 – HV _{out}	6	Channel 4 - RETURN	17
Channel 5 – HV _{out}	7	Channel 5 - RETURN	18
Channel 6 – HV _{out}	8	Channel 6 - RETURN	19
Channel 7 – HV _{out}	9	Channel 7 - RETURN	20
Channel 8 – HV _{out}	50	Channel 8 - RETURN	39
Channel 9 – HV _{out}	49	Channel 9 - RETURN	38
Channel 10 – HV _{out}	48	Channel 10 - RETURN	37
Channel 11 – HV _{out}	47	Channel 11 - RETURN	36
Channel 12 – HV _{out}	46	Channel 12 - RETURN	35
Channel 13 – HV _{out}	45	Channel 13 - RETURN	34
Channel 14 – HV _{out}	44	Channel 14 - RETURN	33
Channel 15 – HV _{out}	43	Channel 15 - RETURN	32
FUNCTION	Pin	FUNCTION	Pin
CCG (Crate GND)	12	CCG (Crate GND)	21
CCG (Crate GND)	31	CCG (Crate GND)	40
SAFETY LOOP	22	SAFETY LOOP	30
Notes: To reduce cost Pins 14 to 20 and 3	32 to 38 can be omit		

Table 10: Assignment REDEL Connector R51.R48, 2 groups of 8 channels (ex. EM168n001)

9 Accesories

CAUTION!

Only use genuine iseg parts like power cables, CAN cables and terminators for stable and safe operation.

$\overline{\mathbb{N}}$
CAUTION!

ACCESSORY ITEM	ORDER ITEM CODE
REDEL coupling Socket, without contacts	Z200325
REDEL pin contact	Z592189
REDEL Socket contact, ERA.05.403.ZLL1	Z592263
REDEL SL pin contact	Z592261
REDEL SL sockets Contact, EGG.3B.665.ZZM	Z592262
REDEL socket carrier red SLA.H51.LLZG	Z201035
Lemo plug 2-pole without collet chuck (SL)	Z592312
1-pin LEMO connector, FFA.00.250.CTAC31	Z200793

Table 11: Accesories

10 Order guides

CABLE ORDER GUIDE						
POWER SUPPLY SIDE CONNECTOR	CABLE CODE	CABLE DESCRIPTION	LOAD SIDE CONNECTOR	ORDER CODE LLL = length in m ⁽¹		
R51.47-G	07	HV cable 6kV Kerpen SL-v2YCeHI 37xAWG26/7red	R51.46-A	RG47_C07- <i>LLL</i> _RA47		
R51.48-G	07	HV cable 6kV Kerpen SL-v2YCeHI 37xAWG26/7red	R51.48-A	R45G_C07- <i>LLL</i> _RA45		
Notes: ¹⁾ Length building examples: 10cm \rightarrow 0.1, 2.5m \rightarrow 2.5, 12m \rightarrow 012, 999m \rightarrow 999						

Table 12: Guideline for cable ordering

EH	16	8	010	Р	105	000	48	00
High Voltage, Distinct Source	Numbers of channels	Class	V _{nom}	Polarity	I _{nom}	Option (hex)	HV-Connector	Customized Version
	8 16	7 = Standard 8 = High Precision	three significante digits •100V For Example: 008 = 800V	p = positive n = negative	two significante digits + number of zeros For Example: 105 = 1mA	Sum of the hex codes see Table 3: Technical data: Options and order information For Example: IU + TC = 804	47 / 48 = Redel Multipin see Table 8: Safety Loop and Limit Connector (drawings not to scale)	00 = none
EM	16	8	ХХХ	р		000	48	00
High Voltage, Distinct Source mixed Channels	Numbers of channels	Class	Channel- Configuration	Polarity	not applicable	Option (hex)	HV-Connector	Customized Version
	8 16	7 = Standard 8 = High Precision	Sample 001 see Table 2: Technical data: Sample configuration of EHS series 8	p = positive n = negative		Sum of the hex codes see Table 3: Technical data: Options and order information	47 / 48 = Redel Multipin see Table 8: Safety Loop and Limit Connector	00 = none

Table 13: Item code parts for different configurations

11 Appendix

For more information please use the following download links:

This document

http://download.iseg-hv.com/SYSTEMS/MMS/EHS/iseg_datasheet_EHS-stack_en.pdf

CAN EDCP Programmers-Guide

http://download.iseg-hv.com/SYSTEMS/MMS/CAN_EDCP_Programmers-Guide.pdf

iseg Hardware Abstraction Layer

http://download.iseg-hv.com/SYSTEMS/MMS/isegHardwareAbstractionLayer.pdf

Crate Controller CC24/23 manual

http://download.iseg-hv.com/SYSTEMS/MMS/EHS/iseg manual CC2x en.pdf

12 Glossary

SHORTCUT	MEANING			
V _{nom}	nominal output voltage			
V _{out}	output voltage			
V _{set}	set value of output voltage			
V _{mon}	monitor voltage			
V _{meas}	digital measured value of voltage			
V _{p-p}	peak to peak ripple voltage			
V _{in}	input / supply voltage			
V _{type}	type of output voltage (AC, DC)			
V _{ref}	internal reference voltage			
V _{max}	limit (max.) value of output voltage			
$\Delta V_{out} - [\Delta V_{in}]$	deviation of V _{out} dep. on variation of supply voltage			
$\Delta V_{out} - [\Delta R_{load}]$	deviation of V _{out} dep. on variation of output load			
V _{bounds}	Voltage bounds, a tolerance tube $V_{set} \pm V_{bounds}$ around V_{set} .			
I _{nom}	nominal output current			
I _{out}	output current			
I _{set}	set value of output current			
I _{mon}	monitor voltage of output current			
I _{meas}	digital measured value of current			
I _{trip}	current limit to shut down the output voltage			
l _{in}	input / supply current			
I _{max}	limit (max.) value of output current			
I _{limit}	Current Limit.			
I _{bounds}	Current bounds, a tolerance tube $I_{set} \pm I_{bounds}$ around I_{set} .			
P _{nom}	nominal output power			
P _{in}	input power			
P _{in_nom}	nominal input power			
Т	temperature			
T _{REF}	Reference temperature			
ON	HV ON/OFF			
/ON	HV OFF/ON			
СН	channel(s)			
HV	high voltage			
LV	low voltage			
GND	signal ground			
INH	Inhibit			
POL	Polarity			
KILL	KillEnable			

13 Warranty & service

This device is made with high care and quality assurance methods. The standard factory warranty is 36 months. Please contact the iseg sales department if you wish to extend the warranty.

CAUTION!

Repair and maintenance may only be performed by trained and authorized personnel.

For repair please follow the RMA instructions on our website: www.iseg-hv.com/en/support/rma

14 Disposal

INFORMATION

All high-voltage equipment and integrated components are largely made of recyclable materials. Do not dispose the device with regular residual waste. Please use the recycling and disposal facilities for electrical and electronic equipment available in your country.

15 Manufacturer's contact

iseg Spezialelektronik GmbH Bautzner Landstr. 23 01454 Radeberg / OT Rossendorf GERMANY FON: +49 351 26996-0 | FAX: +49 351 26996-21

www.iseg-hv.com | info@iseg-hv.de | sales@iseg-hv.de