

Technical information

Last changed on: 2023-01-17

RS-232 Interface Programmers Guide for NHQ High Precision and Standard Modules

Document history

Version	Date	Major changes
2.1	2023-01-17	Fixed minimum wait time (command W) and High Precision set voltage format (command D)
2.0	2016-04-20	Relayouted documentation
1.0	2012-03-06	Initial release

Disclaimer / Copyright

Copyright $\ensuremath{\mathbb{C}}$ 2023 iseg Spezialelektronik GmbH / Germany. All Rights Reserved.

This document is under copyright of iseg Spezialelektronik GmbH, Germany. It is forbidden to copy, extract parts, duplicate for any kind of publication without a written permission of iseg Spezialelektronik GmbH. This information has been prepared for assisting operation and maintenance personnel to enable efficient use.

Safety

This section contains important security information for the installation and operation of the device. Failure to follow safety instructions and warnings can result in serious injury or death and property damage.

Safety and operating instructions must be read carefully before starting any operation.

We decline all responsibility for damages and injuries caused which may arise from improper use of our equipment.

Depiction of the safety instructions

DANGER!

"Danger!" indicates a severe injury hazard. The non-observance of safety instructions marked as "Danger!" will lead to possible injury or death.

WARNING!

"Warning!" indicates an injury hazard. The non-observance of safety instructions marked as "Warning!" could lead to possible injury or death.

CAUTION!

Advices marked as "Caution!" describe actions to avoid possible damages to property.

INFORMATION

Advices marked as "Information" give important information.

Read the manual.

Important information.

Attention high voltage!

Intended Use

The device may only be operated within the limits specified in the data sheet. The permissible ambient conditions (temperature, humidity) must be observed. The device is designed exclusively to control high voltage systems as specified in the data sheet. Any other use not specified by the manufacturer is not intended. The manufacturer is not liable for any damage resulting from improper use.

Qualification of personnel

A qualified person is someone who is able to assess the work assigned to him, recognize possible dangers and take suitable safety measures on the basis of his technical training, his knowledge and experience as well as his knowledge of the relevant regulations.

General safety instructions

- Observe the valid regulations for accident prevention and environmental protection.
- Observe the safety regulations of the country in which the product is used.
- Observe the technical data and environmental conditions specified in the product documentation.
- You may only put the product into operation after it has been established that the high-voltage device complies with the country-specific regulations, safety regulations and standards of the application.
- The high-voltage power supply unit may only be installed by qualified personnel.

Important security information

DANGER!

This device generates high voltages or is part of or attached to high voltage supplying systems. High voltages are dangerous and may be fatal.

DANGER!

USE CAUTION WHILE WORKING WITH THIS EQUIPMENT. BE AWARE OF ELECTRICAL HAZARDS.

Always follow at the minimum these provisions:

- High voltages must always be grounded
- Do not touch wiring or connectors without securing
- Never remove covers or equipment
- Always observe humidity conditions
- · Service must be done by qualified personnel only

WARNING!

RAMP DOWN VOLTAGES!

Before insertion or removal of crate controller, please make sure, that all voltages are ramped down, modules are switched off and power cord is disconnected.

CAUTION!

When remote controlling the high voltage systems, make sure that nobody is near the high voltage or can be injured.

INFORMATION

CHECK COMPATIBILITY!

Please check compatibility list first.

Table of Content

Document history	2
Disclaimer / Copyright	2
Safety	3
Depiction of the safety instructions	3
Intended Use	4
Qualification of personnel	4
General safety instructions	4
Important security information	5
1. RS-232 Interface NHQ High Precision	7
1.1. RS-232 Control Mode	7
1.2. Manual Control Mode	7
1.3. RS-232 Interface Specification	7
1.4. Interface Programming	7
1.5. Command Set	8
1.6. Status Information	9
1.7. Error Codes	9
1.8. Module Status	10
1.9. Auto Start	10
2. RS-232 Interface NHQ Standard	11
2.1. RS-232 Control Mode	11
2.2. Manual Control Mode	11
2.3. RS-232 Interface Specification	11
2.4. Programming	11
2.5. Command Set	12
2.6. Status Information	13
2.7. Error Codes	13
2.8. Module Status	14
2.9. Auto Start	14
3. Glossary	15
4. Manufacturer contact	16

RS-232 Interface NHQ High Precision

The RS-232 interface provides the following functionality for the operation of the high voltage units.

1.1. RS-232 Control Mode

Write function: set voltage; ramp speed; maximal output current (current trip); auto start

• Switch function: output voltage = set voltage, output voltage = 0

Read function: set voltage; actual output voltage; ramp speed; actual output current; current trip; auto start;

hardware limits voltage and current; status

Front panel switches have priority over software control.

1.2. Manual Control Mode

While the unit is operated in manual control mode, only RS-232 read cycles are interpreted. Commands are accepted, but do not result in an output voltage change.

1.3. RS-232 Interface Specification

The RS-232 interface is located at a D-SUB-9 connector on the back panel.

The electric transfer is performed via RxD and TxD, related to floating GND of the interface. The D-SUB-9 pin assignment is given in the following table.

The cable connection to the computer is 1:1 (no null modem-cable!). If no 9-pin cable is available, connections must be set up as shown in the table.

	Signal	HV-supply		PC	PC	Connection
	RS-232	D-SUB-9	Internal	D-SUB-9	D-SUB-25	3-lead cable
Signal pin assignment	RxD	2		2	3	
	TxD	3		3	2	
	GND	5		5	7	
		4	ן (bridged)	4	20	ן (bridged)
		6	- (bridged)	6	6	- (bridged)
		8	J (bridged)	8	5	☐ (bridged)

Table 1 RS-232 interface pin assignment

1.4. Interface Programming

The serial interface is set to 9600 Bit/s, 8 Bit/character, no parity, 1 Stop-Bit.

The data transfer is character based, with echos as handshake between the compu and the HV power supply unit (Input direction). The transfer direction "HV power supply to computer" (Output direction) is free running.

Between two characters, a programmable delay time is included to allow the computer to receive and evaluate the incoming data. The default delay time setting is 3 ms.

The command transfer uses ASCII characters. Commands are terminated by <CR><LF> (\$0D \$0A or 13 10). Leading zeros can be omitted on input, output is in fixed format.

In order to assure synchronization between the computer and the supply, <CR><LF> has to be sent as first command.

1.5. Command Set

Command	Computer	HV-supply	Description
Read module identifier	#*	# * nnnnnn;m.mm;Vmax;Imax *	Serial number; software release; V _{out max} ; I _{out max}
Read answer delay time	W *	W * nnn *	Answer delay time 1 ≤ W ≤ 255 ms
Write answer delay time	W=nnn *	W=nnn * *	Answer delay time 1 ≤ W ≤ 255 ms
Read measured voltage channel A	U1 *	U1 * { polarity / mantissa / signed exp. } *	(in V)
Read measured current channel A	I1 *	I1 * { mantissa / signed exp. } *	(in A)
Read voltage limit channel A	M1 *	M1 * nnn *	(in % of V _{out max})
Read current limit channel A	N1 *	N1 * nnn *	(in % of I _{out max})
Read set voltage channel A	D1 *	D1 * { mantissa / signed exp. } *	(in V)
Write set voltage channel A	D1=nnnn.n *	D1=nnnn.nn * *	(voltage corresponding resolution in V; 0 ≤ D1 ≤ M1)
Read ramp speed channel A	V1 *	V1 * nnn *	(in V/s)
Write ramp speed channel A	V1=nnn *	V1=nnn * *	(in V/s; 2 ≤ V1 ≤ 255)
Start voltage ramp channel A	G1 *	G1 * S1=xxx *	see Status Information
Write current trip channel A	L1=nnnn *	L1=nnnn * *	Trip corresponding resolution range I _{OUTmax} > 0 Current trip disabled for nnnn = 0
Read current trip channel A	L1 *	L1 * { mantissa / signed exp. } *	(see above, current trip in A)
Read status word channel A	S1 *	S1 * xxx *	see Status Information
Read module status channel A	T1 *	T1 * nnn *	Code 0255, see Module Status
Write auto start channel A	A1=nn *	A1=nn * *	Conditions, see Auto Start
Read auto start channel A	A1 *	A1 * nnn *	8 = Auto start is active; 0 = inactive

Notes:

The channel B of the supply is addressed by replacing 1 with 2.

Table 2 NHQ High Precision command set

^{* = &}lt;CR><LF>

1.6. Status Information

The answer for the command S1 is one of the following:

	Description
ON <sp></sp>	Output voltage according to set voltage
OFF	Channel front panel switch off
MAN	Channel is on, set to manual mode
ERR	V _{max} or I _{max} is or was exceeded
INH	Inhibit signal is or was active
QUA	Quality of output voltage not given at present
L2H	Output voltage increasing
H2L	Output voltage decreasing
LAS	Look at Status (only after G-command)
TRP	Current trip was active
Notes: <sp> = 0x30 = Space</sp>	

Table 3 NHQ High Precision status information

If output voltage has been shut off permanently (by ERR or INH at KILL-ENABLE or TRP) the command "Read Status Word" must be executed before the output voltage can be restored.

1.7. Error Codes

	Description
?????	Syntax error
?WCN	Wrong channel number
?ТОТ	Timeout error (with following reinitialization)
? <sp>UMAX=nnnn</sp>	Set voltage exceeds voltage limit, max. possible value is nnnn

Table 4 NHQ High Precision error codes

1.8. Module Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
QUA	ERR	INH	KILL_ENA	OFF	POL	MAN	U/I resp. A/B

Status-Bit	Description	Bit is 0	Bit is 1
QUA	Quality of output voltage	guaranteed	not guaranteed
ERR	V _{max} or I _{max}	is not exceeded	is or was exceeded
INH	External INHIBIT signal	is inactive	is or was active
KILL_ENA	KILL-ENABLE is	off	on
OFF	Front panel HV-ON switch is	in ON position	in OFF position
POL	Polarity is set to	negative	positive
MAN	Control	via RS-232 interface	manual
U/I (command T1)	Display dialled to	current measurement	voltage measurement
A/B (command T2)	Channel dialled to	channel B	channel A

Table 5 NHQ High Precision module status

Reading the Module Status ("Tx") does not reset the flags "ERR" and "INH". This can be done by reading the corresponding channels status word ("Sx").

1.9. Auto Start

When writing to this register, the corresponding values are permanently stored (a minimum of one million write cycles is guaranteed). The stored values are read back into the registers after POWER-ON.

Bit 74	Bit 3	Bit 2	Bit 1	Bit 0
reserved	Enable Auto Start *)	Save Current Trip	Save Set Voltage	Save Ramp Speed

Notes:

If output voltage has been shut off permanently (by ERR or INH at KILL-ENABLE or TRP), the previous voltage setting will be restored with software ramp after "Read status word".

^{*)} If the precondition for Auto start (module status: OFF + ERR + INH + MAN = 0) is satisfied, the output voltage is automatically ramped to the set voltage. Thus the G-command or POWER-ON and OFF \rightarrow ON are not required.

2. RS-232 Interface NHQ Standard

The RS-232 interface provides the following functionality for the operation of the high voltage units.

2.1. RS-232 Control Mode

Write function: set voltage; ramp speed; maximal output current (current trip); auto start

• Switch function: output voltage = set voltage, output voltage = 0

Read function: set voltage; actual output voltage; ramp speed; actual output current; current trip; auto start;

hardware limits voltage and current; status

Front panel switches have priority over software control.

2.2. Manual Control Mode

While the unit is operated in manual control mode, only RS-232 read cycles are interpreted. Commands are accepted, but do not result in an output voltage change.

2.3. RS-232 Interface Specification

The RS-232 interface is located at a D-SUB-9 connector on the back panel.

The electric transfer is performed via RxD and TxD, related to floating GND of the interface. The D-SUB-9 pin assignment is given in the following following table.

The cable connection to the computer is 1:1 (no null modem-cable!). If no 9-pin cable is available, connections must be set up as shown in the table.

	Signal	HV-supply		PC	PC	Connection
	RS 232	DSUB9	Int.	DSUB9	DSUB25	3-lead cable
Signal pin assignment	RxD	2		2	3	
	TxD	3		3	2	
	GND	5		5	7	
		4	ך (bridged)	4	20	ך (bridged)
		6	(bridged)	6	6	- (bridged)
		8	J (bridged)	8	5	J (bridged)

Table 6 NHQ Standard RS-232 interface pin assignment

2.4. Programming

The serial interface is set to 9600 Bit/s, 8 Bit/character, no parity, 1 Stop-Bit.

The data transfer is character based, with echos as handshake between the computer and the HV power supply unit (Input direction). The transfer direction "HV power supply to computer" (Output direction) is free running.

Between two characters, a programmable delay time is included to allow the computer to receive and evaluate the incoming data. The default delay time setting is 3 ms.

The command transfer uses ASCII characters. Commands are terminated by <CR><LF> (\$0D \$0A or 13 10). Leading zeros can be omitted on input, output is in fixed format.

In order to assure synchronisation between the computer and the supply, <CR><LF> has to be sent as first command.

2.5. Command Set

Command	Computer	HV-supply	Description
Read module identifier	#*	# * nnnnnn;m.mm;Vmax;Imax *	Serial number; software release; V _{out max} ; l _{out max}
Read answer delay time	W *	W * nnn *	Answer delay time 1≤ W ≤ 255 ms
Write answer delay time	W=nnn *	W=nnn * *	Answer delay time 1 ≤ W ≤ 255 ms
Read measured voltage channel A	U1 *	U1 * { polarity / voltage } *	(in V)
Read measured current channel A	I1 *	I1 * { mantissa / signed exp. } *	(in A)
Read voltage limit channel A	M1 *	M1 * nnn *	(in % of V _{out max})
Read current limit channel A	N1 *	N1 * nnn *	(in % of l _{out max})
Read set voltage channel A	D1 *	D1 * { voltage } *	(in V)
Write set voltage channel A	D1=nnnn *	D1=nnnn * *	(in V; 0 ≤ D1 ≤ M1)
Read ramp speed channel A	V1 *	V1 * nnn *	(in V/s)
Write ramp speed channel A	V1=nnn *	V1=nnn * *	(in V/s; 2 ≤ V1 ≤ 255)
Start voltage ramp channel A	G1 *	G1 * S1=xxx *	see Status information
Write current trip channel A	L1=nnnn *	L1=nnnn * *	Trip corresponding current resolution > 0 Current trip disabled for nnnn = 0
Read current trip channel A	L1 *	L1 * nnnn *	(see above, current trip in A)
Read status word channel A	S1 *	S1 * xxx *	see Status Information
Read module status channel A	T1 *	T1 * nnn *	Code 0255, see Module Status
Write auto start channel A	A1=nn *	A1=nn * *	Conditions, see Auto Start
Read auto start channel A	A1 *	A1 * nnn *	8 = Auto start is active; 0 = inactive

Notes:

The channel B of the supply is addressed by replacing 1 with 2.

Table 7 NHQ Standard command set

^{* = &}lt;CR><LF>

2.6. Status Information

The answer for the command S1 or S2 is one of the following:

	Description
ON <sp></sp>	Output voltage according to set voltage
OFF	Channel front panel switch off
MAN	Channel is on, set to manual mode
ERR	V _{max} or I _{max} is or was exceeded
INH	Inhibit signal is or was active
QUA	Quality of output voltage not given at present
L2H	Output voltage increasing
H2L	Output voltage decreasing
LAS	Look at Status (only after G-command)
TRP	Current trip was active
Notes:	
<sp> = 0x30 = Space</sp>	

Table 8 NHQ Standard status information

If output voltage has been shut off permanently (by ERR or INH at KILL-ENABLE or TRP) the command "Read Status Word" must be executed before the output voltage can be restored.

2.7. Error Codes

	Description
?????	Syntax error
?WCN	Wrong channel number
?ТОТ	Timeout error (with following reinitialization)
? <sp>UMAX=nnnn</sp>	Set voltage exceeds voltage limit, max. possible value is nnnn
Notes: <sp> = 0x30 = Space</sp>	

Table 9 NHQ Standard error codes

2.8. Module Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
QUA	ERR	INH	KILL_ENA	OFF	POL	MAN	U/I resp. A/B

Status-Bit	Description	Bit is 0	Bit is 1	
QUA	Quality of output voltage	guaranteed	not guaranteed	
ERR	V _{max} or I _{max}	is not exceeded	is or was exceeded	
INH	External INHIBIT signal	is inactive	is or was active	
KILL_ENA	KILL-ENABLE is	off	on	
OFF	Front panel HV-ON switch is	in ON position	in OFF position	
POL	Polarity is set to	negative	positive	
MAN	Control	via RS-232 interface	manual	
U/I (command T1)	Display dialled to	current measurement	voltage measurement	
A/B (command T2)	Channel dialled to	channel B	channel A	

Table 10 NHQ Standard module status

2.9. Auto Start

When writing to this register, the corresponding values are permanently stored (a minimum of one million write cycles is guaranteed). The stored values are read back into the registers after POWER-ON.

Bit 74	Bit 3	Bit 2	Bit 1	Bit 0	
reserved	Enable Auto Start *)	Save Current Trip	Save Set Voltage	Save Ramp Speed	

^{*)} If the precondition for Auto start (module status: OFF + ERR + INH + MAN = 0) is satisfied, the output voltage is automatically ramped to the set voltage. Thus the G-command or POWER-ON and OFF \rightarrow ON are not required.

If output voltage has been shut off permanently (by ERR or INH at KILL-ENABLE or TRP), the previous voltage setting will be restored with software ramp after "Read status word".

3. Glossary

SHORTCUT	MEANING	
OV	Supply ground	
V _{nom}	nominal output voltage	
V _{out}	output voltage	
V _{set}	set value of output voltage	
V _{mon}	monitor voltage of output voltage	
V _{meas}	digital measured value of output voltage	
V _{p-p}	peak to peak ripple voltage	
V _{in}	input / supply voltage	
V_{type}	type of output voltage (AC, DC)	
V_{ref}	internal reference voltage	
V _{max}	limit (max.) value of output voltage	
V _{limit}	voltage limit	
$\Delta V_{out} - [\Delta V_{in}]$	deviation of V _{out} depending on variation of supply voltage	
$\Delta V_{out} - [\Delta R_{load}]$	deviation of V_{out} depending on variation of output load	
V _{bounds}	voltage bounds, a tolerance tube $V_{set} \pm V_{bounds}$ around V_{set}	
I _{nom}	nominal output current	
l _{out}	output current	
I _{set}	set value of output current	
I _{mon}	monitor voltage of output current	
I _{meas}	digital measured value of current	
I _{trip}	current limit to shut down the output voltage	
l _{in}	input / supply current	
I _{max}	limit (max.) value of output current	
l _{limit}	current limit	
I _{bounds}	current bounds, a tolerance tube I _{set} ± I _{bounds} around I _{set}	
P _{nom}	nominal output power	
P _{in}	input power	
P _{in_nom}	nominal input power	
Т	temperature	
T _{REF}	reference temperature	

SHORTCUT	MEANING
ON	HV ON
OFF	HV OFF
СН	channel(s)
HV	high voltage
LV	low voltage
GND	signal ground
INH	Inhibit
POL	Polarity
KILL	KillEnable

Table 11 Glossary and shortcuts

4. Manufacturer contact

iseg Spezialelektronik GmbH

Bautzner Landstr. 23 01454 Radeberg / OT Rossendorf

GERMANY

FON: +49 351 26996-0 | FAX: +49 351 26996-21

www.iseg-hv.com | info@iseg-hv.de | sales@iseg-hv.de