

Technische Dokumentation

Letzte Änderung am: 30.10.2019

GPS Series

GPS 300W, GPS 350W – COMPACT, GPS 800W

Dokumentenhistorie

Version	Datum	Wesentliche Änderungen
1.0	30.10.2019	Neues Handbuch GPS-Serie

Haftungsausschluss / Copyright

Copyright © 2019 by iseg Spezialelektronik GmbH / Deutschland. Alle Rechte vorbehalten.

Dieses Dokument unterliegt dem Copyright der iseg Spezialelektronik GmbH, Deutschland. Es ist verboten, ohne schriftliche Genehmigung der iseg Spezialelektronik GmbH Teile davon zu kopieren, zu extrahieren, zu vervielfältigen oder zu veröffentlichen. Diese Informationen wurden erstellt, um das Bedien- und Wartungspersonal bei der effizienten Nutzung zu unterstützen.

Die Informationen in diesem Handbuch können ohne Vorankündigung geändert werden. Wir übernehmen keine Verantwortung für Fehler im Dokument. Wir behalten uns das Recht vor, Änderungen im Produktdesign ohne Vorbehalt und ohne Benachrichtigung der Benutzer vorzunehmen. Wir lehnen jede Verantwortung für Schäden und Verletzungen ab, die durch eine unsachgemäße Verwendung des Gerätes entstehen.

Wichtige Hinweise

Vor Inbetriebnahme des Gerätes ist die Bedienungsanleitung zu lesen.

Um mögliche Schäden vom Benutzer abzuwenden, ist es untersagt, das Gehäuse zu öffnen!

Im Gerät befinden sich keine vom Benutzer zu wartenden Teile.

Der Netzanschluss ist mit Basisisolierung und Schutzleiter ausgeführt. Das Gerät darf nur mit angeschlossenem Schutzleiter (PE) betrieben werden!

Für Fehler in dieser Bedienungsanleitung wird keine Haftung übernommen. Alle Rechte und technische Änderungen vorbehalten!

WARNUNG!

Die Nichtbeachtung der Hinweise im gekennzeichneten Text "Warnung!" kann zu Tod oder schwerer Körperverletzung führen.

WARNUNG!

ACHTUNG!

Hinweise im gekennzeichneten Text "Achtung!" beschreiben Maßnahmen, um mögliche Sachschäden zu vermeiden

ACHTUNG!

HINWEIS!

HINWEIS!

Hinweise im gekennzeichneten Text "Hinweis!" machen auf Besonderheiten, zum Beispiel einzelner Optionen, aufmerksam.

Inhaltsverzeichnis

	Dokumentenhistorie	2
	Haftungsausschluss / Copyright	
	Wichtige Hinweise	
1	· ·	
1	Sicherheitshinweise	
2	Gerätebeschreibung	
	2.1 Kurzbeschreibung	
	2.2 Optionen	7
	2.3 Lieferumfang	7
	2.4 Funktionsprinzip	8
	2.5 Technische Daten	9
	2.5.1 GPS 300W	g
	2.5.2 GPS 350W - COMPACT	11
	2.5.3 GPS 800W	
	2.6 Beschaltung Hochspannungsausgang	
	2.6.1 Geräteklasse GPS 350W – COMPACT	
	2.6.2 Geräteklasse GPS 300W und 800W	
	2.7 Maßzeichnungen	
	2.7.1 GPS 300W	
	2.7.2 GPS 350W - COMPACT	
	2.7.3 GPS 800W	
	2.8 Anschlussbelegung	
	2.8.1 Netzanschluss	
	2.8.2 Hochspannungsanschluss	
	2.8.3 Rückleiteranschluss (Geräteklasse GPS 300W und 800W)	
	2.8.4 Schnittstellenanschluss	
	2.9 Steckverbinder und PIN-Belegung	25
3	Funktionsbeschreibung	26
	3.1 Betriebszustände	26
	3.2 Betriebsüberwachung	26
	3.2.1 Spannungen	
	3.2.2 Temperatur	
	3.3 Überschlagsbehandlungsroutine (ARC Management)	
	3.3.1 Geräte ohne Option ARC	
	3.3.2 Geräte mit Option ARC	
4	Fernsteuerung über Schnittstelle	
+	4.1 Beschreibung der AIO-Schnittstelle	
	4.1.1 Setzwerte	
	4.1.2 Monitorspannungen	
	4.1.3 INHIBIT	
	4.1.4 ON	
	4.1.5 ARC (nur bei Option ARC)	
5	Fehlersuche	
5	Wartung	33
7	Bestellhinweise und Zubehör	34
3	Anhang	36
9	Garantie & Service	
10	Entsorgung	
11	Herstellerkontakt	

1 Sicherheitshinweise

Die folgenden Hinweise dienen sowohl der persönlichen Sicherheit des Bedienpersonals als auch der Sicherheit des beschriebenen Produktes sowie der daran angeschlossenen Geräte.

Das Hochspannungsnetzteil darf nur durch qualifiziertes Fachpersonal installiert werden.

Vor dem Anschluss an das örtliche Netz ist zu klären, ob die Nenneingangsspannung des Gerätes mit der Netzspannung übereinstimmt.

Das Gerät ist mit einer Zuleitungssicherung (siehe technische Daten) abzusichern.

Die Schutzleiterverbindungen müssen nach der Montage auf einwandfreie Funktion geprüft werden.

Das Hochspannungskabel ist fachmännisch an den Verbraucher anzuschließen und der Anschluss mit der entsprechenden Spannungsfestigkeit zu isolieren.

WARNUNG!

WARNUNG!

Bevor Arbeiten am Verbraucher und am Hochspannungsausgang des Gerätes vorgenommen werden, ist das Gerät auszuschalten, der Abbau eventuell vorhandener Restspannung abzuwarten und der Verbraucher mit einer geeigneten Erdungseinrichtung zu erden. Je nach Einsatzfall können diese hohen Spannungen auch noch längere Zeit nach dem Abschalten anstehen. Diese Spannungen können zu lebensbedrohlichen Verletzungen führen.

WARNUNG!

WARNUNG!

Hochspannungsversorgungen der Geräteklasse GPS werden von einer einphasigen Netzspannung versorgt und erzeugen eine Ausgangsspannung bis zu 70 kV. Die Nichtbeachtung dieser Spannungsverhältnisse kann Tod, schwere Körperverletzung und / oder Sachschaden verursachen.

WARNUNG!

Bei Geräten, die mit einem LEMO Hochspannungssteckverbinder (L16, L30) ausgerüstet sind, darf die Hochspannung erst eingeschaltet werden, wenn das entsprechende Gegenstück kontaktiert ist.

WARNUNG!

Der Schirm des Hochspannungsausganges ist immer mit dem Gehäuse verbunden und kann als Rückleiter genutzt werden.

Bei den Geräteklassen GPS 300W und 800W muss dafür die werksseitig installierte <u>Kurzschlussbrücke</u> zwischen den Anschlüssen "0V" und " = " montiert sein.

lst diese <u>Kurzschlussbrücke nicht installiert</u>, ist als Rückleiter ein zusätzlicher Leiter mit einem Querschnitt von mindestens 1,5 mm² zu benutzen. Dieser wird mit dem Anschluss "0V" verbunden.

Der Anschluss "OV"-Anschluss kann eine auf Schutzleiterpotential bezogene Spannung annehmen.

WARNUNG!

Bei den Geräteklassen GPS, 300W und 800W muss der Anwender dafür Sorge tragen, dass von dem Potentialunterschied zwischen Rückleiter und Schutzleiter keine Gefährdung ausgeht!

WARNUNG!

Bei den Geräteklassen GPS, 300W und 800W hat der Schnittstellenanschluss das gleiche Potential wie der Anschluss "0V".

Ein entsprechender Luftdurchsatz (siehe technische Daten) muss durch die Einbaulage gewährleistet werden.

Die Lufteintritts- und -austrittsöffnungen dürfen nicht abgedeckt oder verbaut werden.

Das Gerät GPS 350 – COMPACT ist für den Einbau in Geräteträger vorbereitet. Dazu können die <u>beidseitigen Befestigungspunkte</u> genutzt werden.

Die Einschraubtiefe der zur Befestigung verwendeten M4-Schrauben darf nicht mehr als 4 mm, gemessen von der Gehäuseoberfläche, betragen.

Für den Einsatz als Tischgerät müssen die mitgelieferten Gerätefüße aufgeklebt werden. Das Gerät darf nur mit diesem Mindestabstand (10 mm) zur Standfläche betrieben werden.

WARNUNG!

WARNUNG!

Bei einer Umgebungstemperatur größer als 35°C kann die Temperatur des Gehäuses 45°C überschreiten!

2 Gerätebeschreibung

2.1 Kurzbeschreibung

Hochspannungsversorgungen der Geräteklasse GPS werden von einer einphasigen Netzspannung versorgt und erzeugen eine Ausgangsspannung von bis zu 70 kV sowie einen Ausgangsstrom von bis zu 800 mA.

Das Gerät wird über:

• die <u>Analogschnittstelle</u>

gesteuert und überwacht.

Hauptmerkmale:

- hervorragende Regelcharakteristik
- sehr geringe Restwelligkeit/Rauschen und gute EMV

2.2 Optionen

- optional Kondensatorlader (CLD)
- optional ARC-Management (ARC)
- optional 10 V AIO Voltage (A0)

OPTION	OPTIONS CODE	BEISPIEL	HEX CODE
Polarität	Positiv: x = p Negativ: x = n	GP p 10 807	
Kondensatorlader	CLD	GPp 10 807 - CLD	40
ARC-Management	ARC	GPp 10 807 - ARC	4
ARC-Management und Kondensatorlader	CAR	GPp 10 807 - CAR	44
Monitorspannung 10V	A0		A0

2.3 Lieferumfang

Gerät	inclusive	optional
GPS 300W	Netzkabel, Hochspannungskabel (3m, Standard)	
GPS 800W	Netzkabel, Hochspannungskabel (3m, Standard)	
GPS – COMPACT	Netzkabel, Hochspannungskabel (3m, Standard)	

2.4 Funktionsprinzip

Die vereinfachte Funktionsweise des Gerätes wird im Folgenden beschrieben. Unmittelbar an dem Netzstecker ist intern ein Netzfilter angeordnet. Ein netzfreundlicher Gleichrichter mit Leistungsfaktorkorrektur (PFC) schließt sich dem Netzfilter an und generiert die Zwischenkreisspannung.

ACHTUNG!

ACHTUNG!

Bei einer Eingangsspannung größer 255 V arbeitet die PFC nur noch als Gleichrichter und die Stromaufnahme ist nicht mehr sinusförmig. Im Eingangsspannungsbereich unter 100 V muss entweder die Ausgangsleistung oder die Umgebungstemperatur reduziert werden (siehe Abbildung 13: Leistungsreduzierung in Abhängigkeit der Eingangsspannung).

Die Zwischenkreisspannung wird durch mehrere Elektrolytkondensatoren gestützt und mit Hilfe eines Wechselrichters mit angeschlossenem Resonanzkreis in eine sinusförmige, steuerbare Wechselspannung gewandelt. Mit Hilfe des Hochspannungstransformators und den an diesen angeschlossenen Gleichrichtern wird entsprechend der externen Sollwertspannung eine Ausgangsspannung bereit gestellt. Über zwei Präzisionsspannungsteiler und einen Shunt wird die Ausgangsspannung und der Ausgangsstrom gemessen und der Steuereinheit zugeführt. Ein an die Ausgangskondensatoren angeschlossener Dämpfungswiderstand begrenzt den Ausgangsstrom während eines Lastwechsels oder eines ARCs.

Eine Steuereinheit steuert die Ausgangsspannung und den Ausgangsstrom entsprechend der externen Setzwertspannungen und begrenzt Ausgangsstrom und Ausgangsspannung auf die vorgegebenen Werte. Für die externe Verarbeitung werden normierte Monitorsignale von Strom und Spannung bereitgestellt. Die Steuerschaltung überwacht außerdem die Zwischenkreisspannung und Versorgungsspannungen sowie die Temperaturen der Zuluft und einzelner Baugruppen.

Mit Hilfe eines an der Frontplatte installierten Schalters wird das Gerät (betrifft die Geräteklassen 300W und 800W) ein- bzw. ausgeschaltet.

Optional verfügt das Gerät über eine Überschlagsbehandlungsroutine (ARC-Management).

Optional kann das Gerät als Kondensatorlader (CLD - Sehr geringes Überschwingen der Ausgangsspannung) geliefert werden.

2.5 Technische Daten

2.5.1 GPS 300W

TECHNISCHE DATEN	N	GPS 300W			
Ausgangsleistung P _{ne}	om	300 W			
Polarität		Fest, positiv oder negativ			
Wirkungsgrad		> 80% (V _{in} = 230 V, P _{nom})			
Restwelligkeit (Spannungs-	Standard	$\Delta V_{out} < 0.01\% \cdot V_{nom}$ (> 10 Hz), $V_{out} \le 8 \text{ kV}$ $\Delta V_{out} < 0.05\% \cdot V_{nom}$ (> 10 Hz), $V_{out} > 8 \text{ kV}$			
regelung)	CLD	ΔV _{out} < 1,5% • V _{nom} (> 10 Hz)			
Stabilität ⁽¹		ΔV _{out} < 0,01% • V _{nom}			
Spannungsregelung		$\Delta V_{out} < 0.01\% \cdot V_{nom} (\Delta V_{in}, 0 \le I_{out} \le I_{nom}, 5 \text{ V} \le V_{out} \le V_{nom})$			
Stromregelung		$\Delta I_{out} < 0.2\% \cdot I_{nom} (\Delta V_{in}, 5 \text{ V} \le V_{out} \le V_{nom})$			
Genauigkeit (2		Spannung: <1 % • V _{OUT} Strom: <1 % • I _{OUT}			
Temperaturkoeffizie	nt	< 200 ppm			
Steuerung	AIO	Analoge signale: Pegel 0 V – 5 V Digitale signale: Niedriger Pegel 0 V – 1 V Hoher Pegel 3,5 V – 5 V oder offen			
Versorgung		$\begin{split} &V_{in} = 85 - 264 \text{ VAC (PFC),} \\ &I_{in} < 1,7 \text{ A (V}_{in} = 230 \text{ V, P}_{nom}), \\ &I_{in} < 3,5 \text{ A (V}_{in} = 115 \text{ V, P}_{nom}), \text{ Netzfrequenz 47 Hz} < f < 63 \text{ Hz} \\ &\text{intern abgesichert mit einer Sicherung 2 x 6,3 A mit einer trägen Charakteristik,} \\ &\text{Einschaltstromspitze intern auf max. 25 A begrenzt} \end{split}$			
Zuleitungssicherung		6,3 A, träge			
Kühlung		Zwangskühlung mit integriertem Ventilator (≤ 10 m³/h)			
Überwachungen		Netzspannung, Hilfsspannung, Überspannung, Temperatur, ARC			
Betriebsbedingunge	n	Temperatur: -20°C – 35 °C Luftfeuchtigkeit: 20% – 90%, nicht kondensierend			
Lagerbedingungen		Temperatur: -25°C – 80 °C Luftfeuchtigkeit: 20% – 90%, nicht kondensierend			
Elektromagnetische	Störaussendung	EN 55011 Grenzwertkurve B			
Verträglichkeit	Störfestigkeit	EN 61000 4-2, EN 61000 4-3, EN 61000 4-4, EN 61000 4-8			
Sicherheitsstandard		EN 61010-1 (VDE 0411)			
Überschläge (ARC)		Siehe: Überschlagsbehandlungsroutine (ARC Management)			
Spannungsrampe Standard		0,25 • V _{nom} kV/s			
CLD		10 • V _{nom} kV/s			
Potentialfreier Rückleiter der Hochspannung		Potentialunterschied zwischen Rückleiter und Schutzleiter bis zu ± 400 V			
Hinweise: ¹⁾ für 8 h unter konsta ²⁾ für ein Jahr	anten Bedingungen, r	nach einer ½ h Erwärmung			

KONFIGURAT	KONFIGURATIONEN GPS 300W						
Model	V _{nom}	I _{nom}	Hochspannungs- Anschluss	Größe	Gewicht	Herstellercodierung	Optionen (1
GPx 10 307	1 kV	300 mA	SHV	1U, 19", 410 mm,	5 kg	GP010307xZZZZZZZZ0200	CLD, ARC, A0
GPx 20 157	2 kV	150 mA	SHV	1U, 19", 410 mm	5 kg	GP020157xZZZZZZZZ0200	CLD, ARC, A0
GPx 30 107	3 kV	100 mA	SHV	1U, 19", 410 mm	6,5 kg	GP030107xZZZZZZZZ0200	CLD, ARC, A0
GPx 40 756	4 kV	75 mA	SHV	1U, 19", 410 mm	6,5 kg	GP040756xZZZZZZZZ0200	CLD, ARC, A0
GPx 60 506	6 kV	50 mA	SHV	1U, 19", 410 mm	7 kg	GP060506xZZZZZZZZ30300	CLD, ARC, A0
GPx 80 356	8 kV	35 mA	SHV	1U, 19", 410 mm	7 kg	GP080356xZZZZZZZZ0300	CLD, ARC, A0
GPx 120 256	12 kV	25 mA	L16 / G21 ⁽²	1U, 19", 410 mm	7 kg	GP120256xZZZZZZZ1400	CLD, ARC, A0
GPx 150 206	15 kV	20 mA	L16 / G21 ⁽²	1U, 19", 410 mm	7 kg	GP150206xZZZZZZZ1400	CLD, ARC, A0
GPx 200 156	20 kV	15 mA	L30 / G21 ⁽²	1U, 19", 410 mm	7 kg	GP200156xZZZZZZZZ1500	CLD, ARC, A0
GPx 300 106	30 kV	10 mA	L30 / G31 ⁽²	1U, 19", 410 mm	7 kg	GP300106xZZZZZZZ1500	CLD, ARC, A0

Hinweise: ¹⁾ ARC und A0 sind nicht miteinander kombinierbar

²⁾ optional

x – Polarität (positiv, negativ)

Z – Die vollständige Herstellercodierung bildet sich aus den gerätespezifischen Eigenschaften (zum Beispiel <u>OPTIONEN</u>), siehe Kapitel <u>7.Bestellhinweise</u>

2.5.2 GPS 350W - COMPACT

TECHNISCHE DATE	N	GPS 350W – COMPACT			
Ausgangsleistung P _{nom}		350 W			
Polarität		Fest, positiv oder negativ			
Wirkungsgrad		> 80% (V _{in} = 230 V, P _{nom})			
Restwelligkeit (Spannungs-	Standard	ΔV _{out} < 0,25% • V _{nom}			
regelung)	CLD	$\Delta V_{out} < 2.5\% \cdot V_{nom}$			
Stabilität ⁽¹		ΔV _{out} < 0,02% • V _{nom}			
Spannungs-	Standard	$\Delta V_{out} < 0.02\% \cdot V_{nom}$, (ΔV_{in} , $0 \le I_{out} \le I_{nom}$, $5 \ V \le V_{out} \le V_{nom}$)			
regelung	CLD	$\Delta V_{out} < 0.1\% \cdot V_{nom}$, (ΔV_{in} , $0 \le I_{out} \le I_{nom}$, $5 \ V \le V_{out} \le V_{nom}$)			
Stromregelung		$\Delta I_{out} < 0.2\% \cdot I_{nom} (\Delta V_{inr}, 0 \text{ V} \le V_{out} \le V_{nom}, 5 \text{ V} \le V_{out} \le V_{nom}$			
Genauigkeit ⁽²		Spannung: < 1 % • V _{OUT} Strom: < 1 % • I _{OUT}			
Temperaturkoeffizi	ent	< 200 ppm			
Steuerung	AIO	Analoge signale: Pegel 0 V – 5 V Digitale signale: Niedriger Pegel 0 V – 1 V Hoher Pegel 3,5 V – 5 V oder offen			
Versorgung		V_{in} = 85 – 264 VAC (PFC), I_{in} < 5 A (Vin = 85 V, P_{nom}), Netzfrequenz 47 Hz < f < 63 Hz intern abgesichert mit einer Sicherung 2 x 6,3 A mit einer trägen Charakteristik, Einschaltstromspitze intern auf max. 25 A begrenzt			
Zuleitungssicherun	g	6,3 A, träge			
Kühlung		Zwangskühlung, 2-stufig mit integriertem Ventilator (≤ 70 m³/h)			
Überwachungen		Netzspannung, Hilfsspannung, Überspannung, Temperatur, ARC			
Betriebsbedingung	en	Temperatur: -20°C – 50 °C Luftfeuchtigkeit: 20% – 90%, nicht kondensierend			
Lagerbedingungen		Temperatur: -25°C – 80 °C Luftfeuchtigkeit: 20% – 90%, nicht kondensierend			
Elektromagnetisch	Störaussendung	EN 55011 Grenzwertkurve B			
e Verträglichkeit Störfestigkeit		EN 61000 4-2, EN 61000 4-3, EN 61000 4-4, EN 61000 4-8			
Sicherheitsstandard		EN 61010-1 (VDE 0411)			
Überschläge (ARCs)		Siehe: Überschlagsbehandlungsroutine (ARC Management)			
Spannungsrampe Standard		0,25 • V _{nom} kV/s			
	CLD	10 • V _{nom} kV/s			
Potentialfreier Rück Hochspannung	kleiter der	Rückleiter und Schutzleiter sind fest verbunden			
Hinweise:	tanten Bedingungen,	nach einer ½ h Erwärmung			

²⁾ für ein Jahr

KONFIGURATI	KONFIGURATIONEN GPS 350W - COMPACT						
Model	V _{nom}	I _{nom}	Hochspannungs- Anschluss	Größe	Gewicht	Herstellercodierung	Optionen (1
GPx 10 357	1 kV	350 mA	G11	254mm, 10", 81 mm	3,5 Kg	GP010357xZZZZZZZZ0600	CLD, ARC, A0
GPx 20 177	2 kV	175 mA	G11	254mm, 10", 81 mm	3,5 Kg	GP020177xZZZZZZZZ0600	CLD, ARC, A0
GPx 30 127	3 kV	120 mA	G11	254mm, 10", 81 mm	3,5 Kg	GP030127xZZZZZZZZ0600	CLD, ARC, A0
GPx 50 706	5 kV	70 mA	G11	254mm, 10", 81 mm	3,5 Kg	GP050706xZZZZZZZZ0600	CLD, ARC, A0
GPx 80 456	8 kV	45 mA	G11	254mm, 10", 81 mm	3,5 Kg	GP080456xZZZZZZZZ0600	CLD, ARC, A0
GPx 100 356	10 kV	35 mA	G11	254mm, 10", 81 mm	3,5 Kg	GP100356xZZZZZZZZ0600	CLD, ARC, A0
GPx 150 236	15 kV	23 mA	G21	254mm, 10", 81 mm	3,5 Kg	GP150236xZZZZZZZZ7000	CLD, ARC, A0
GPx 200 186	20 kV	18 mA	G21	254mm, 10", 81 mm	4,5 Kg	GP200186xZZZZZZZZ0700	CLD, ARC, A0
GPx 300 126	30 kV	12 mA	G31	254mm, 10", 81 mm	4,5 Kg	GP300126xZZZZZZZZ0800	CLD, ARC, A0
GPx 400 905	40 kV	9 mA	E70	254mm, 10", 106 mm	6,5 Kg	GP400905xZZZZZZZ2400	CLD, ARC, A0
GPx 500 705	50 kV	7 mA	E70	254mm, 10", 106 mm	6,5 Kg	GP500705xZZZZZZZ2400	CLD, ARC, A0
GPx 600 605	60 kV	6 mA	E70	254mm, 10", 106 mm	6,5 Kg	GP600605xZZZZZZZZ2400	CLD, ARC, A0
GPx 700 505	70 kV	5 mA	E70	254mm, 10", 106 mm	7 Kg	GP700505xZZZZZZZZ2400	CLD, ARC, A0

Hinweise: ¹⁾ ARC und A0 sind nicht miteinander kombinierbar

x - Polarität (positiv, negativ)
 Z - Die vollständige Herstellercodierung bildet sich aus den gerätespezifischen Eigenschaften (zum Beispiel <u>OPTIONEN</u>), siehe Kapitel <u>7.Bestellhinweise</u>

2.5.3 GPS 800W

TECHNISCHE DATEN		GPS 800W			
Ausgangsleistung P _{nom}		800 W			
Polarität		Fest, positiv oder r	negativ		
Wirkungsgrad		> 85% (V _{in} = 230 V,	P _{nom})		
Restwelligkeit Standard (Spannungs-		$\Delta V_{out} < 0.01\% \cdot V_{norm}$	$_{0}$ (> 10 Hz), $V_{out} \le 8 \text{ k}$	$\Delta V_{out} < 0.05\% \cdot V_{nom} (> 10 Hz), V_{out} > 8 kV$	
regelung)	CLD	$\Delta V_{out} < 1,5\% \cdot V_{nom}$ ((> 10 Hz)		
Stabilität ⁽¹		$\Delta V_{out} < 0.01\% \cdot V_{nom}$	n		
Spannungsregelung		$\Delta V_{out} < 0.01\% \cdot V_{nom}$	$_{n}$ (ΔV_{in} , $0 \le I_{out} \le I_{nom}$, ξ	$5 \text{ V} \leq \text{V}_{\text{out}} \leq \text{V}_{\text{nom}}$	
Stromregelung		$\Delta I_{out} < 0.2\% \cdot I_{nom}$ (Δ	ΔV_{in} , $5 \text{ V} \leq V_{\text{out}} \leq V_{\text{nom}}$)		
Genauigkeit ⁽²		Spannung: Strom:	< 1 % • V _{OUT} < 1 % • I _{OUT}		
Temperaturkoeffizier	nt	< 200 ppm			
Steuerung	AIO	Analoge signale: Digitale signale:	Pegel Niedriger Pegel Hoher Pegel	0 V – 5 V 0 V – 1 V 3,5 V – 5 V oder offen	
Versorgung		V_{in} = 85 – 264 VAC (PFC), I_{in} < 5 A (V_{in} = 230 V, P_{nom}), I_{in} = 9 A (V_{in} = 115 V, P_{nom}) Netzfrequenz 47 Hz < f < 63 Hz intern abgesichert mit Sicherungen 2 x 10 A mit einer trägen Charakteristik Einschaltstromspitze intern auf max. 25 A begrenzt			
Zuleitungssicherung		10 A, träge			
Kühlung		Zwangskühlung, 2-stufig mit integriertem Ventilator (≤ 20 m³/h)			
Überwachungen		Netzspannung, Hilfsspannung, Überspannung, Temperatur, ARC			
Betriebsbedingunger	1	Temperatur: -20°C – 35 °C, Luftfeuchtigkeit: 20% – 90%, nicht kondensierend			
Lagerbedingungen		Temperatur: -25°C – 80 °C Luftfeuchtigkeit: 20% – 90%, nicht kondensierend			
Elektromagnetische	Störaussendung	EN 55011 Grenzwertkurve B			
Verträglichkeit Störfestigkeit		EN 61000 4-2, EN 61000 4-3, EN 61000 4-4, EN 61000 4-8			
Sicherheitsstandard		EN 61010-1 (VDE 0411)			
Überschläge (ARC)		Siehe: Überschlagsbehandlungsroutine (ARC Management)			
Spannungsrampe Standard 0,25 • V _{nom} kV/s					
	CLD	10 • V _{nom} kV/s			
Potentialfreier Rückleiter der Hochspannung		Potentialunterschied zwischen Rückleiter und Schutzleiter bis zu ± 400 V			

 $^{^{1)}}$ für 8 h unter konstanten Bedingungen, nach einer % h Erwärmung

²⁾ für ein Jahr

CONFIGURATI	CONFIGURATIONS GPS 800W						
Model	V _{nom}	I _{nom}	Hochspannungs- Anschluss	Größe	Gewicht	Herstellercodierung	Optionen (1
GPx 10 807	1 kV	800 mA	SHV	1U, 19", 410mm	5 kg	GP010807xZZZZZZZZ0200	CLD, ARC, A0
GPx 20 407	2 kV	400 mA	SHV	1U, 19", 410mm	5 kg	GP020407xZZZZZZZZ0200	CLD, ARC, A0
GPx 30 257	3 kV	250 mA	SHV	1U, 19", 410mm	5 kg	GP030257xZZZZZZZZ0200	CLD, ARC, A0
GPx 40 207	4 kV	200 mA	SHV	1U, 19", 410mm	5 kg	GP040207xZZZZZZZZ0200	CLD, ARC, A0
GPx 60 137	6 kV	130 mA	SHV	1U, 19", 410mm	5 kg	GP060137xZZZZZZZZ0300	CLD, ARC, A0
GPx 80 107	8 kV	100 mA	SHV	1U, 19", 410mm	5 kg	GP080107xZZZZZZZZ0300	CLD, ARC, A0
GPx 120 656	12 kV	65 mA	L16 / G21 ⁽²	1U, 19", 410mm	7 kg	GP120656xZZZZZZZ1400	CLD, ARC, A0
GPx 150 506	15 kV	50 mA	L16 / G21 ⁽²	1U, 19", 410mm	7 kg	GP150506xZZZZZZZZ1400	CLD, ARC, A0

Hinweis:

^{1) –} ARC und A0 sind nicht miteinander kombinierbar

²⁾ – optional

x – Polarität (positiv, negativ)
Z – Die vollständige Herstellercodierung bildet sich aus den gerätespezifischen Eigenschaften (zum Beispiel <u>OPTIONEN</u>), siehe Kapitel <u>7.Bestellhinweise</u>

2.6 Beschaltung Hochspannungsausgang

2.6.1 Geräteklasse GPS 350W - COMPACT

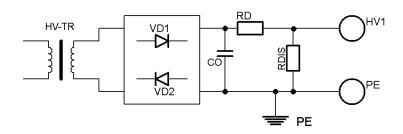


Abbildung 1: Beschaltung Hochspannungsausgang, Geräteklasse GPS 350W – COMPACT

2.6.2 Geräteklasse GPS 300W und 800W

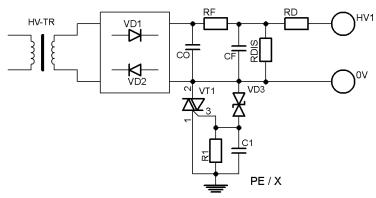


Abbildung 2: Beschaltung Hochspannungsausgang, Geräteklasse GPS 300W und 800W

2.7 Maßzeichnungen

2.7.1 GPS 300W

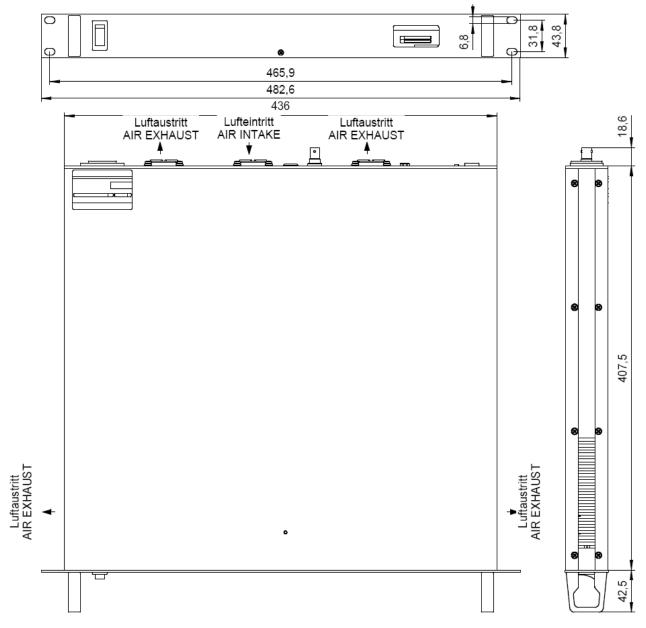


Abbildung 3: GPS 300W

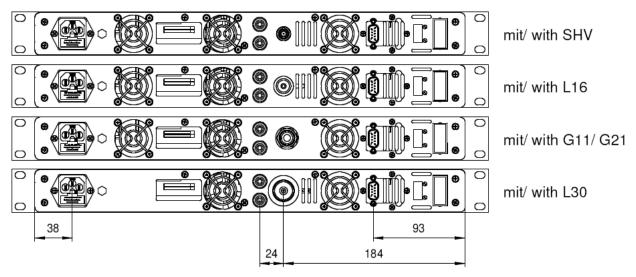


Abbildung 4: GPS 300W, Rückwand Varianten

2.7.2 GPS 350W - COMPACT

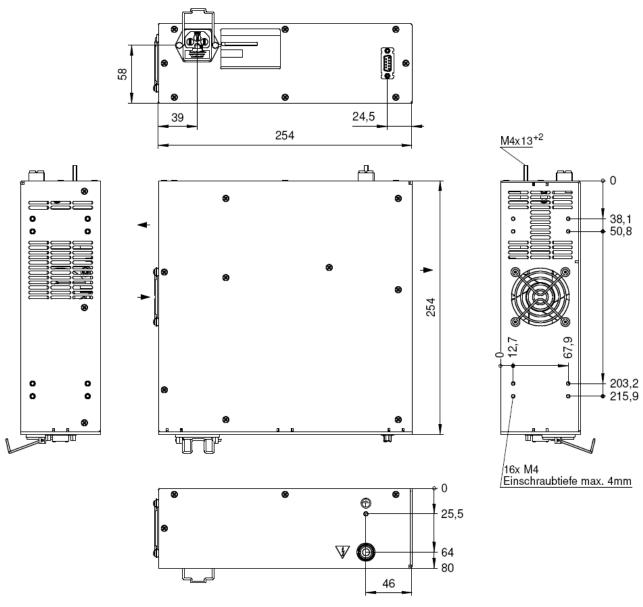


Abbildung 5: GPS 350W - COMPACT bis 30kV

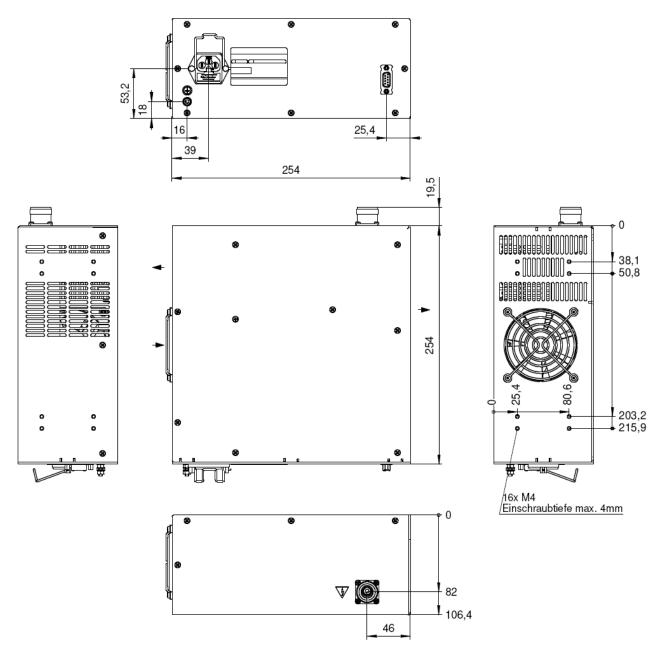


Abbildung 6: GPS 350W – COMPACT ab 40kV

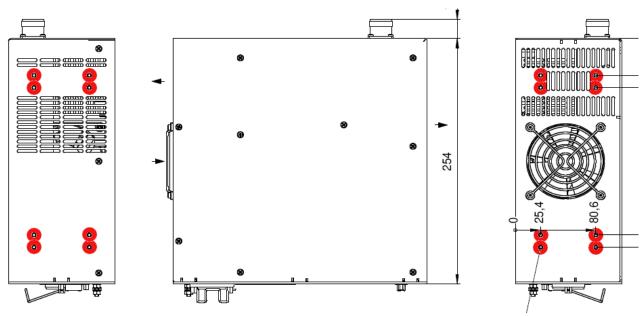
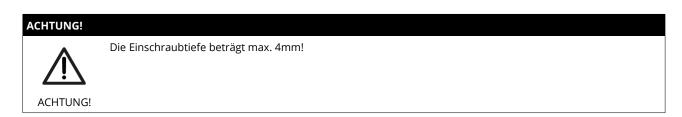
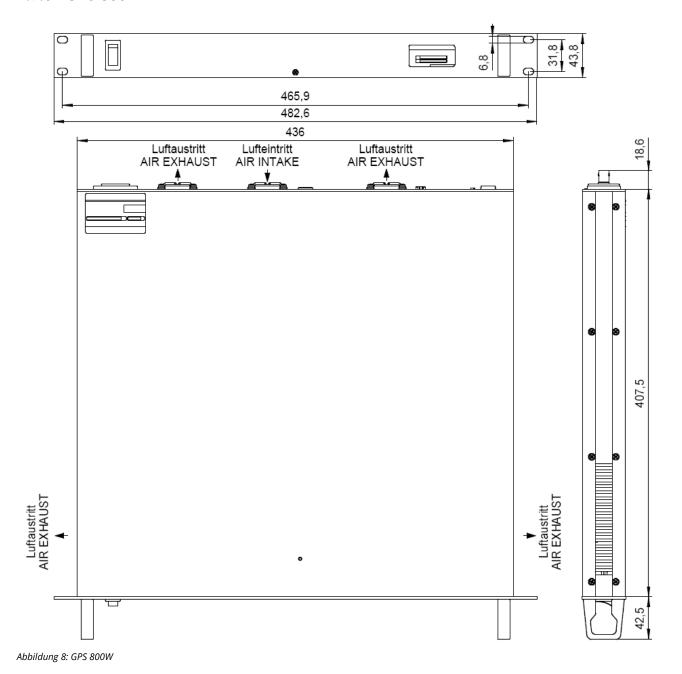




Abbildung 7: Beidseitige Befestigungspunkte am Beispiel GPS ab 40kV

2.7.3 GPS 800W

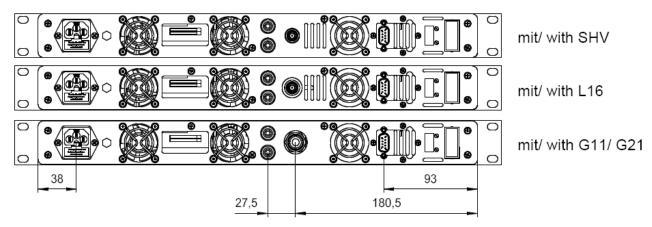


Abbildung 9: GPS 800W, Rückwand Varianten

2.8 Anschlussbelegung

2.8.1 Netzanschluss

Die Verbindung des Gerätes mit dem Netz geschieht mit Hilfe des Kaltgerätesteckers.

2.8.2 Hochspannungsanschluss

WARNUNG!

WARNUNG!

Bevor Arbeiten am Verbraucher und am Hochspannungsausgang des Gerätes vorgenommen werden, ist das Gerät vom Netz zu trennen, der Abbau eventuell vorhandener Restspannung abzuwarten und der Verbraucher mit einer geeigneten Erdungseinrichtung zu erden. Je nach Einsatzfall können diese hohen Spannungen auch noch längere Zeit nach dem Abschalten anstehen. Diese Spannungen können zu lebensbedrohlichen Verletzungen führen.

Das Gerät verfügt über einen Hochspannungsanschluss.

Das Hochspannungskabel ist fachmännisch an den Verbraucher anzuschließen und der Anschluss mit der entsprechenden Spannungsfestigkeit zu isolieren.

Der Schirm des Hochspannungsausganges ist immer mit dem Gehäuse verbunden und wird als Rückleiter genutzt.

Bei den Geräteklassen GPS 300W und 800W muss dafür die werksseitig installierte Kurzschlussbrücke (siehe Abbildung 10: Beispielabbildung der Kurzschlussbrücke) zwischen den Anschlüssen "0V" und " 🚣 " montiert sein.

Abbildung 10: Beispielabbildung der Kurzschlussbrücke

Geräte der Serie 350W – COMPACT verfügen über einen Erdungsbolzen (Gewinde M4).

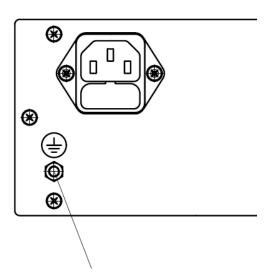


Abbildung 11: Erdungsbolzen

2.8.3 Rückleiteranschluss (Geräteklasse GPS 300W und 800W)

Ist die Kurzschlussbrücke (siehe Abbildung 10: Beispielabbildung der Kurzschlussbrücke) nicht installiert, ist als Rückleiter ein zusätzlicher Leiter mit einem Querschnitt von mindestens 1,5 mm² zu benutzen. Dieser wird mit dem Anschluss "0V" verbunden. Die Potentialdifferenz zwischen dem Anschluss "0V" und dem Schutzleiter kann bis zu ± 400 V betragen.

Bei Potentialdifferenzen von > I 400 I V zwischen "0 V" und Schutzleiter werden diese Anschlüsse über eine elektronische Schutzschaltung kurzgeschlossen um Schäden am Gerät zu verhindern.

2.8.4 Schnittstellenanschluss

siehe Beschreibung der AlO-Schnittstelle

2.9 Steckverbinder und PIN-Belegung

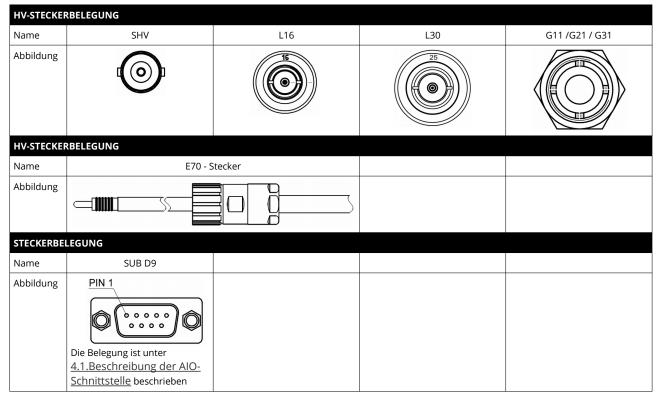


Tabelle 1: Steckverbinder

TEILNUMMER (Herstellercode / iseg Zubehörteile Artikelcode)							
HOCHSPA	ANNUNGSSEITE	КА	BELSEITE				
	SHV (ROSENBERGER)						
Socket	57S501-200N3	Connector	57K101-006N3 / Z590162				
	S08 (RA	ADIALL)					
Socket	R317.580.000	Connector	R317.005.000 / Z592474				
	L16 (L	EMO)					
Socket	ERA.1Y.416.CLL	Connector	FFR1Y.416.CFAE55R / Z592437				
	L30 (LEMO)						
Socket	ERA.3Y.425.CCL	Connector	FFR.3Y.425.CFAE55 / Z592495				
	G11 ((GES)					
Socket	7311020	Connector	7310020 / Z592516				
	G21 ((GES)					
Socket	7321020	Connector	7320020 / Z592391				
	G31 (GES)						
Sockete	7331053	Connector	7331052 / Z592501				
	E	70					
Socket	Hergestellt von ISEG	Connector	Hergestellt von ISEG				

Tabelle 2: Artikelnummer Informationen

3 Funktionsbeschreibung

3.1 Betriebszustände

Die <u>Abbildung 12</u> zeigt den Arbeitsbereich des Gerätes. Es existieren zwei verschiedene Betriebszustände für die Hochspannungserzeugung:

- 1. Konstantspannungsquelle CV:
 - Regelung der Ausgangsspannung entsprechend des Setzwertes der Ausgangsspannung unter der Bedingung gemessener Ausgangsstrom (I_{MON}) < Setzwert Ausgangsstrom (I_{SET}).
- 2. Konstantstromquelle CC:

Regelung des Ausgangsstromes entsprechend des Setzwertes der Ausgangsstromes unter der Bedingung gemessene Ausgangsspannung (V_{MON}) < Setzwert Ausgangsspannung (V_{SET}).

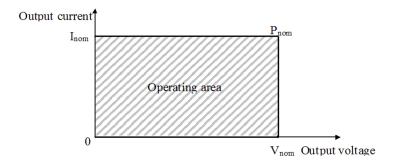


Abbildung 12: Arbeitsbereich des Gerätes

3.2 Betriebsüberwachung

3.2.1 Spannungen

Die Zwischenkreisspannung sowie die internen Hilfsspannungen werden überwacht. Liegt eine dieser Spannungen unter bzw. über dem vorgegebenen Grenzwert, wird die Hochspannungserzeugung gesperrt.

WARNUNG!

Die Hochspannungserzeugung wird sofort wieder aktiviert, wenn die Grenzwerte nicht mehr unter- bzw. überschritten werden.

WARNUNG!

Verfügt das Gerät über die Option CLD, wird der Maximalwert der Ausgangsspannung mit einem Operationsverstärker-Komparator überwacht. Werksseitig ist diese Spannungsschwelle auf ca. 110% der maximalen Ausgangsspannung eingestellt. Wird die Operationsverstärker-Schwelle überschritten (z.B. durch einen internen Gerätefehler) wird die Hochspannungserzeugung gesperrt.

Wird bei Netzeingangsspannungen kleiner als 95 VAC gearbeitet, so ist die Ausgangsleistung gemäß Abbildung 13: Leistungsreduzierung in Abhängigkeit der Eingangsspannung zu reduzieren, ansonsten sinkt die Zwischenkreisspannung. Dieses Absinken der Zwischenkreisspannung führt zur Sperrung der Hochspannungserzeugung.

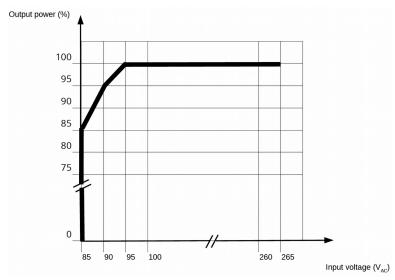


Abbildung 13: Leistungsreduzierung in Abhängigkeit der Eingangsspannung

3.2.2 Temperatur

Die Betriebstemperatur wird an mehreren Stellen im Gerät überwacht. Eine Abschaltung der Hochspannungserzeugung erfolgt, falls die Temperatur der Zuluft 35°C (bzw. 50°C bei der Geräteklasse GPS 350W – COMPACT) übersteigt oder die Temperatur verschiedener Baugruppen einen vorgegebenen Grenzwert überschreitet.

WARNUNG!

WARNUNG!

Die Hochspannungserzeugung wird sofort wieder aktiviert, wenn die Grenzwerte nicht mehr unter- bzw. überschritten werden.

3.3 Überschlagsbehandlungsroutine (ARC Management)

Als Überschlag (ARC) wird eine nahezu vollständige Entladung pro Zeiteinheit definiert. Das Gerät erkennt einen Überschlag (ARC), wenn der Ausgangsstrom $I_{OUT} = (I_{SET} + 0.5 \cdot I_{NOM})$ ist.

3.3.1 Geräte ohne Option ARC

ACHTUNG!

Bei Geräten ohne die Option ARC muss der Anwender dafür Sorge tragen, dass die zulässige Anzahl von Überschlägen nicht überschritten wird. Diese Geräte schützen sich nicht vor hochfrequenten Überschlägen.

ACHTUNG!

Die zulässige Anzahl von Überschlägen ist abhängig von der Geräteklasse, der Ausgangsspannung sowie der installierten Optionen und ist in der Tabelle 3: Zulässige Überschläge spezifiziert.

Gerät	Anzahl der Überschläge (ARC) / Sekunde
GPS 350W, COMPACT	1
GPS 350W, COMPACT – CLD ($V_{nom} \le 2 \text{ kV}$)	2
GPS 350W, COMPACT – CLD (2 kV $<$ V _{nom} \le 50 kV)	2.5
GPS 350W, COMPACT – CLD (V _{nom} > 50 kV)	0.8
GPS 300W	1
GPS 300W - CLD (V _{nom} ≤ 2 kV)	10
GPS 300W - CLD (2 kV < V _{nom} ≤ 15 kV)	4
GPS 300W - CLD (V _{nom} > 15 kV)	2
GPS 800W	1
GPS 800W - CLD (V _{nom} ≤ 2 kV)	10
GPS 800W - CLD (V _{nom} > 2 kV)	2

Tabelle 3: Zulässige Überschläge

3.3.2 Geräte mit Option ARC

Optional verfügt das Gerät über eine Überschlagsbehandlungsroutine (ARC-Management, siehe Abbildung 14: ARC Management).

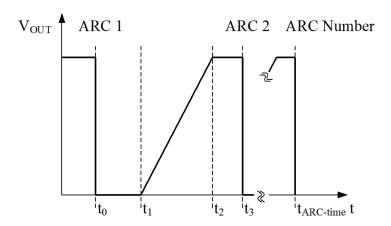


Abbildung 14: ARC Management

Nach einem erkannten Überschlag werden die Ansteuerimpulse des Wechselrichters innerhalb von wenigen Mikrosekunden für die Austastzeit (ARC-Wait, $t_{ARC-Wait} = t_1 - t_0$) gesperrt.

Gleichzeitig wird der interne Setzwert der Ausgangsspannung V_{SET} zu null gesetzt. Ab dem Zeitpunkt t=t₁ folgt der interne Setzwert der Ausgangsspannung einer Spannungsrampe (ARC-Ramp).

Die Parameters des ARC Managements sind in der Tabelle 4: Parameter des ARC Managements aufgeführt.

Gerät	Anzahl der Überschläge (ARC) / Sekunde	ARC-Wait	ARC-Ramp time
GPS 350 W, COMPACT	1	200 ms ± 10%	800 ms ± 10%
GPS 350 W, COMPACT – CLD ($V_{nom} \le 2 \text{ kV}$)	2	100 ms ± 10%	400 ms ± 10%
GPS 350 W, COMPACT – CLD (2 kV $<$ V _{nom} \le 50 kV)	2.5	80 ms ± 10%	320 ms ± 10%
GPS 350 W, COMPACT – CLD (V _{nom} > 50 kV)	0.8	250 ms ± 10%	1000 ms ± 10%
GPS 300 W	1	200 ms ± 10%	800 ms ± 10%
GPS 300 W − CLD (V _{nom} ≤ 2 kV)	10	12 ms ± 10%	88 ms ± 10%
GPS 300 W – CLD (2 kV < $V_{nom} \le 15 \text{ kV}$)	4	35 ms ± 10%	215 ms ± 10%
GPS 300 W - CLD (V _{nom} > 15 kV)	2	100 ms ± 10%	400 ms ± 10%
GPS 800 W	1	200 ms ± 10%	800 ms ± 10%
GPS 800 W - CLD (V _{nom} ≤ 2 kV)	10	12 ms ± 10%	88 ms ± 10%
GPS 800 W - CLD (V _{nom} > 2 kV)	2	100 ms ± 10%	400 ms ± 10%

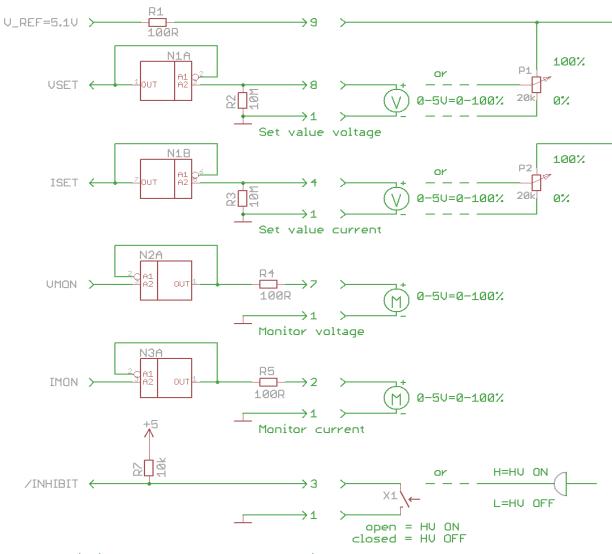
Tabelle 4: Parameter des ARC Managements

4 Fernsteuerung über Schnittstelle

4.1 Beschreibung der AlO-Schnittstelle

WARNUNG!

Vor dem An- oder Abstecken des Schnittstellenkabels ist das Gerät auszuschalten oder vom Netz zu trennen.


Alle analogen und digitalen Ein- und Ausgänge befinden sich auf dem D-SUB-9-Stecker. Dieser Steckverbinder hat folgende Belegung:

AIO, D Sub 9 Anschluss					
Pin 1		GND	Rückführung der Pins 2-9		
Pin 2		I _{mon} (0 5 V) ⁽¹	Monitor-Ausgangsstrom		
Pin 3		INHIBIT	Digitales Eingangssignal		
Pin 4		I _{set} (0 5 V) ⁽¹⁾	Sollwert Ausgangsstrom		
Pin 5		ON	Digitales Eingangssignal		
Pin 6	Standard version	GND	Rückführung der Pins 2-9		
	Option ARC	ARC	Digitales Ausgangssignal		
Pin 7		V _{mon} (0 5 V) ⁽¹	Monitorausgangsspannung		
Pin 8		V _{set} (0 5 V) ⁽¹⁾	Sollwert Ausgangsspannung		
Pin 9		V _{ref} 5,1 V ⁽¹	Referenz		
Hinweis 1) optional AIO mit V _{set/mon} und I _{set/mon} = 0 bis 10V und V _{ref} = 10,2V					

Tabelle 5: AIO

Die Beschaltung der analogen und digitalen Ein- und Ausgänge ist in der folgenden Abbildung zu sehen.

Warning! Do not use the INHIBIT function as a safety loop.

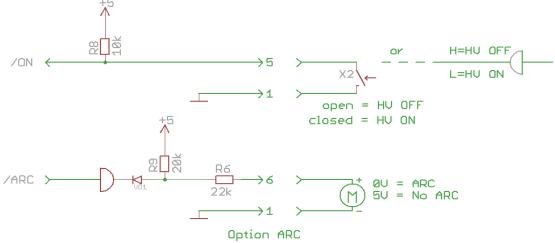


Abbildung 15: Beschaltung der analogen und digitalen Ein- und Ausgänge

4.1.1 Setzwerte

Eine Spannung von 0 – 5 V $^{(1)}$, angelegt am Pin 8 (Bezugspotential Pin 1) des Signalsteckverbinders "AIO", steuert die Ausgangsspannung von 0 – V_{nom} . Am Pin 4 wird in gleicher Weise der Ausgangsstrom von 0 – I_{nom} gesteuert.

4.1.2 Monitorspannungen

Am Pin 7 des Signalsteckverbinders "AlO" ist eine der Ausgangsspannung und am Pin 2 eine dem Ausgangsstrom proportionale Spannung von 0 – $5 \text{ V}^{(2)}$ verfügbar (Bezugspotential Pin 1).

4.1.3 INHIBIT

Mit Hilfe der INHIBIT-Funktion (Pin 3 des Signalsteckverbinders "AlO") kann die Hochspannungserzeugung durch ein externes Signal bzw. einen Relais- oder Schalterkontakt gesperrt werden. Ist der Pegel am Pin 3 des Steckverbinders "AlO" (Bezugspotential Pin 1) hoch oder der Eingang offen, ist die Hochspannungserzeugung freigegeben. Bei einem niedrigen Pegel ist die Hochspannungserzeugung gesperrt. Die Ausgangsspannung wird ohne Rampe abgeschaltet.

4.1.4 ON

Ist die Hochspannungserzeugung freigegeben (INHIBIT), erhöht sich nach einer fallenden Flanke am Pin 5 des Signalsteckverbinders "AIO" (Bezugspotential Pin 1) die Ausgangsspannung entsprechend der Spannungsrampe oder in Abhängigkeit des vorgegebenen Ausgangsstroms bis auf den eingestellten Setzwert (V_{SET} an Pin 8 des Steckverbinders "AIO") oder bis der vorgegebene Setzwert des Ausgangsstroms erreicht (I_{SET} an Pin 4 des Steckverbinders "AIO") wird.

Die Hochspannungserzeugung wird mit einem hohen Pegel an Pin 5 des Signalsteckverbinders "AIO" (Bezugspotential Pin 1) mit der Spannungsrampe abgeschaltet.

4.1.5 ARC (nur bei Option ARC)

Bei einem detektierten Überschlag (siehe <u>Überschlagsbehandlungsroutine (ARC Management)</u>) ist der Pegel am Pin 6 des Signalsteckverbinders "AIO" (Bezugspotential Pin 1) für ca. 1 ms niedrig.

optional AIO mit $V_{set/mon}$ und $I_{set/mon} = 0$ bis 10V und $V_{ref} = 10,2V$

² optional AIO mit $V_{\text{set/mon}}$ und $I_{\text{set/mon}} = 0$ bis 10V und $V_{\text{ref}} = 10,2V$

5 Fehlersuche

Problem		Lösungsmöglichkeit
Gerät liefert keine AusgangsspannungLüfter drehen sich nicht	→	Überprüfung Netzspannung Überprüfung Netzanschluss
Gerät liefert keine AusgangsspannungLüfter drehen sich	→	Überprüfung Netzspannung Überprüfung Umgebungstemperatur
Beim Netzeinschalten lösen externe Sicherungsautomaten aus.	→	Sicherungen mit träger Charakteristik verwenden (Einschaltstromspitze 25 A)

HINWEIS!

HINWEIS!

Führen diese Maßnahmen nicht zum Erfolg, muss das Gerät von autorisiertem Fachpersonal überprüft bzw. zur Überprüfung an den Hersteller gesandt werden.

6 Wartung

Zur Einhaltung der spezifizierten Genauigkeit der SETZ- und MESS-Signale ist das Gerät jährlich zu kalibrieren.

WARNUNG!

Reparatur- und Wartungsarbeiten im Gerät dürfen nur von ausgebildetem und autorisiertem Fachpersonal vorgenommen werden.

WARNUNG!

7 Bestellhinweise und Zubehör

HOCHSPANNUNGSKABEL UND BESTELLHINWEISE						
HOCHSPANNUNGSSEITE	KABEL	KABELBESCHREIBUNG	LASTSEITIGER STECKER	BESTELLNUMMER LLL = length in m (1		
SHV	04	HV Kabel geschirmt 30kV (HTV-30S-22-2)	offen	SHV_C04-LLL		
S08	04	HV Kabel geschirmt 30kV (HTV-30S-22-2)	offen	S08_C04- <i>LLL</i>		
L16	02	Lemo HV Kabel geschirmt 30kV (Lemo 130660)	offen	L16_C02-LLL		
L30	02	Lemo HV Kabel geschirmt 30kV (Lemo 130660)	offen	L30_C02-LLL		
G11	02	Lemo HV Kabel geschirmt 30kV (Lemo 130660)	offen	G11_C02-LLL		
G21	02	Lemo HV Kabel geschirmt 30kV (Lemo 130660)	offen	G21_C02-LLL		
G31	02	Lemo HV Kabel geschirmt 30kV (Lemo 130660)	offen	G31_C02-LLL		
E70	06	HV Kabel geschirmt 100kV (HVP C2124)	offen	E70_C06-LLL		
¹⁾ Längenbeispiele: 10cm → 0.1, 2.5m → 2.5, 12m → 012, 999m → 999						

Tabelle 6: Hochspannungskabel

KONFIGURATIONS- UND BESTELLUNGSANLEITUNG (Artikelcodeteile)								
GP	150	506	р	000	05	5	14	00
Gerätetyp	V _{nom}	I _{nom}	Polarität	Optionen (hex)	Monitor- spannung	Netzversorgung	HV Anschluss	Kunden- spezifische Anpassung
GPS-Serie	drei signifikante Ziffern • 100V Beispiel: 150: 150 • 100V = 15 kV	zwei signifikante Ziffern + Anzahl der Nullen. Beispiel: 506: 50 • 10 ⁶ nA = 50mA	p = positiv n = negativ	siehe Optionen CLD - 40 ARC - 04	05 = 5 Volt A0 = 10 Volt	5 = Weitbereich mit PFC	02 = SHV 03 = S08 06 = G11 07 = G21 08 = G31 14 = L16 15 = L30 24 = E70	

Tabelle 7: Konfigurations- und Bestellanleitung

HINWEIS

HINWEIS!

Verwenden Sie nur Original-Iseg-Teile wie Netzkabel, CAN-Kabel und Terminatoren für einen stabilen und sicheren Betrieb.

ZUBEHÖR ARTIKEL	BESTELLNUMMER
Original-Netzkabel – EU Plug	Z592069
SHV-Kuppler schraub, (für RG58)	Z590162
SHV-Kuppler schraub, >5kV (für RG58)	Z592474
Lemo HV-Stecker 16kV gerade	Z592437
Lemo HV-Stecker 30kV gerade	Z592495
GES HV-Stecker 10 kV, einpolig vom Typ HS 11 T	Z592516
GES HV-Stecker 20 kV, einpolig vom Typ HS 21 T	Z592391
GES HV-Stecker 30 kV, einpolig vom Typ HS 31 T	Z592501

8 Anhang

Für weitere Informationen verwenden Sie bitte die folgenden Download-Links:

Dieses Dokument

https://iseg-hv.com/de/products/detail/GPS

9 Garantie & Service

Dieses Gerät wird mit hoher Sorgfalt und Qualitätssicherungsmaßnahmen hergestellt. Die Werksgarantie beträgt 12 Monate. Bitte kontaktieren Sie den iseg-Vertrieb, falls eine Garantieverlängerung gewünscht wird.

ACHTUNG!

Reparatur und Wartung dürfen nur von geschultem und autorisiertem Personal durchgeführt werden.

Zur Reparatur befolgen Sie bitte die RMA-Anweisungen auf unserer Website.: www.iseg-hv.com/de/support/rma

10 Entsorgung

HINWEIS!

Alle Hochspannungsgeräte und die darin verbauten Komponenten sind größtenteils aus receyclingfähigen Materialien hergestellt. Entsorgen Sie das Gerät am Ende seiner Einsatzzeit nicht mit dem regulären Hausmüll. Nutzen Sie bitte die in Ihrem Land vorhandenen Recycling- und Entsorgungsmöglichkeiten von elektrischen und elektronischen Altgeräten.

11 Herstellerkontakt

iseg Spezialelektronik GmbH

Bautzner Landstr. 23 01454 Radeberg / OT Rossendorf

DEUTSCHLAND

TELEFON: +49 351 26996-0 | FAX: +49 351 26996-21 <u>www.iseg-hv.com</u> | <u>info@iseg-hv.de</u> | <u>sales@iseg-hv.de</u>